
Letters in High Energy Physics
ISSN: 2632-2714

Volume 2023
December

420

AI-Augmented DevOps: Leveraging Machine Learning for

Predictive Monitoring and Pipeline Optimization

1st Avinash Reddy Segireddy

Lead DevOps Engineer

ORCID ID : 0009-0002-9912-0629

Abstract—The DevOps cross-training model has become widespread in industry, with deep specialization in

either produc- tion support or software engineering among teams in a service environment. Software Reliability

Engineering (SRE) emphasizes a balance between these disciplines by aiming for minimal technical debt in

production systems and aligning ownership with the engineering and product teams responsible for application

reliability. Many organizations recognize the importance of Pre- dictive Monitoring to avoid production

incidents and the use of Machine Learning for CI/CD optimization, as these can reduce alert noise and deal with

the mail problem of Too Many Widgets. However, achieving AI-augmented DevOps requires AI-based

Predictive Monitoring for Engineering and Site Reliability Engi- neering (SRE) teams, which covers delivery

velocity and resource utilization. AI-augmented DevOps encompasses both Predictive Monitoring to avoid

production incidents and Machine Learning- driven Continuous Integration/Continuous Delivery (CI/CD) Op-

timization to improve delivery velocity and resource utilization. It is primarily expressed in terms of

development and produc- tion environments of Software Development Life Cycle (SDLC) pipelines. These

aspects are critical for minimizing Time to Detect (TTD) and Time to Recover (TTR) during incident response,

and optimization with respect to Machine Learning models is essential to avoid over-engineering and needless

expenses. Information Technology (IT) Decision Makers across all industries prioritize these areas of focus in

2022–2023. AI-augmented DevOps is mainly articulated in terms of DevOps principles and Machine Learning

utilization for Predictive Monitoring and CI/CD opti- mizations.

Index Terms—AI-augmented DevOps, predictive monitoring, ML in SRE, time-series forecasting, root-cause

ML, CI/CD optimization, data lineage, reproducibility.

I. INTRODUCTION

Reliably delivering software that meets both

functional and quality requirements is a daunting

challenge in practice, especially for organizations

that strive to release software frequently. SRE

principles prescribe Service Level Objectives to

formalize and are expected to fulfill that reliability.

Pre- dictive monitoring and ML-driven CI/CD

optimization offer collaborating engineering teams

novel means to proactively address these

challenges. Monitoring of online systems is a

precondition for the operational integrity and

quality assur- ance of deployed software.

Integrating AI in observability enables anticipating

future incidents and outages to miti- gate their

impact—and even to fulfil ultimate contracts by

avoiding service disruptions. Similarly, ML

applied to CI/CD pipelines enhances delivery

velocity and resource consumption

Fig. 1. AI and ML are Transforming DevOps

by optimizing testing strategy, tooling design, and

infras- tructure measurement and management.

Such application of ML constitutes a natural

extension of governances that aim to continually

align real-world operations with real-world risk—

all the way through the software-engineering

lifecycle, from experimentation and validation to

deployment and repro- ducibility. In organizations

characterized by a high degree of software-

engineering automation, the motivation for AI

implementation revolves not so much around

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2023
December

421

augmenting technological capabilities but rather

around risk mitigation: that is, an incremental,

conservative, and natural evolution towards

convenience and assurance on the engineering

side. From this perspective, the intersection of

containment of the overall Cost of Failure and of

the overall Successfully Fulfilled Failure Contract

provides an ideal focus for AI in observability and

for AI in pipeline optimization, simply because

explicit investments in observability and

infrastructure support risk- aware software-

engineering practices. Predictive monitoring in

particular privileges integration in incident response

playbooks through actionability and anticipation

modulo the natural tim- ing constraints of the

continual real-time synthesis of incident forecasts.

A. Motivation and scope

Like many other industries Today’s financial

institutions rely on services and technologies

that are highly sensitive to availability and quality

issues—as highlighted by grow- ing success in

online banking, trading, and cryptocurrency

services. Consequently, directors and senior

management are

compelled by the relevant supervisory authorities

to ensure that services operate with a reliability

level that is in line with stakeholders’ service-

level agreements. Furthermore, to reduce the

impact of incidents, the services must be equipped

with alert mechanisms capable of anticipating

incidents and triggering suitable reaction

procedures. Implementation of a predictive

monitoring capability enables such anticipation

and must therefore be a priority at the operating

level. A natural objective for engineering teams

specializing in building and running such services

is to reach the highest possible level of

governance, which aligns the delivery of

technology and services with operational costs

while optimizing delivery speed. Machine learning

(ML) has the potential to address these two

objectives coherently and efficiently, resulting in a

better alignment between operational teams

(responsible for running the services) and

engineering teams (responsible for creating and

evolving the services).

B. Key concepts: DevOps, ML, and AI

augmentation

AI augmentation encompasses three main areas:

the auto- matic execution of known tasks, the

assistance of a human- centric (but not yet fully

automatic or competent) task exe- cution, and the

establishment of propitious conditions for the

governance of these practices. In the DevOps

context, this translates into the automation of the

entire software delivery pipeline and system

operation, information retrieval to assist the

responsible personnel in decision making, and the

evolu- tion of the organization toward a governance

model capable of continuously verifying and

validating the numerous artifacts generated by the

DevOps practices. How can the ongoing

integration of machine learning (ML) and AI

technologies into the DevOps practice ecosystem

be characterized? It is evident that a large part of

the ongoing integration of ML techniques and tools

into the DevOps practice ecosystem aims to

enhance the velocity of delivering business value.

The delivery monitor components are being

progressively adapted to efficiently consider two

key metrics that require non-trivial planning: the

delivery cost and the incident-failure contract

costs. How the predictive monitoring and ML-

driven pipeline optimization building blocks of the

ML-augmented DevOps ecosystem address the

aforementioned velocity-durability in- tegration

dilemma has also been specified.

II. FOUNDATIONS OF AI-DRIVEN

OBSERVABILITY

Data play a crucial role in enabling the practical

application of AI to observability. Telemetry data

can empower ML approaches to predictive

monitoring for improved reliability. Sufficient

volumes of well-structured, high-quality telemetry

data across a wide range of systems and services is

a precondition for time-series forecasting of

incidents and outages, supported by a causality

framework for ML-driven root-cause analysis.

Telemetry data types and collection strategies

embrace the full range of telemetry data: metrics,

traces, logs, events, and security-related signals.

Adequate fidelity and sampling of these data are

vital to the effective identification and response

to software-related incidents,

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2023
December

422

Fig. 2. Service Latency with Forecast and SLO

Threshold

Service Incidents

(mo)

SLO Target Uptime

%

Payments-

API

5 99.95

Orders-API 8 99.9

Search 3 99.9

Checkout-UI 6 99.95

TABLE I

SLO & FAILURE-CONTRACT COST BREAKDOWN

security threats, and privacy violations.

Observability, in the broader sense that includes

predictive monitoring, can thus be understood as

the effort to increase the confidence in software

development and operation by, among other things,

ensuring that sufficient amounts of high-quality

telemetry data are available to enterprising data

scientists seeking to solve key engineering

problems. This requirement recasts the question of

predictive monitoring in the context of engineering

and business collaboration, since the telemetry data

required to feed ML models deployed for

predictive monitoring are the very same data assets

needed to build predictive models for pipeline

optimization, delivery efficiency, site reliability,

and cost management; indeed, the ability to satisfy

the reliability targets defined in such a

collaboration can in turn be regarded as a

contractual obligation.

Equation 01: Telemetry & SLO exceedance

probability Modeling assumption

Y t + h | Ft ∼ N (yt + h, st + h2)

(1)

Tail probability derivation

Pr(Y t + h > t | Ft) = 1 − Pr(Y t + h ≤ t | (2)

Ft) = 1 − F (st + ht − yt + h) (3)

A. Telemetry data types and collection

strategies

Issue explicit (and implicit) sources and kinds of

telemetry data—metrics, traces, events, logs—and

the strategies used to collect them. Emphasize

factors that affect the fidelity of the raw data, such

as sampling rates. Address data sampling and

obfuscation in relation to confidentiality and

privacy. Connect with the engineering incident-

management motivation and

Fig. 3. Exceedance Probability P(Y¿τ) by

Horizon

with section 3.1. Data lineage—the logical flow of

different data sources—and the capability to revert

to previous versions of imminent-ML-data are a

process-enabled necessity that, if undertaken,

could enormously (help) improve the costs and

timeliness of handling ML within a DevOps

Environment. Kinds of AI and ML-Enabled data

are important as they are not manually detailed or

explored, or often neglected entirely; this crosses

with optimized model life-cycle management. The

emerging class of DevOps Policy Management

Infrastructure tools enables continuous low-touch

governance through con- tinuous classification of

resources, data, models, and access while ensuring

that auditing remains simple and low-cost. Some

examples of these initiatives include Microsoft

Azure’s Policy, AWS CloudFormation, Google’s

Policy Library, and Open Policy Agent by Open

Policy. Properly exposed data volume and detailed

meta-data are monitored, and all activities

performed against the environment are continually

assessed through this infrastructure.

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2023
December

423

B. FC and SLO alignment for AI observability

Factorized circuit cost serves as a pricing

mechanism for valuable incidents, while failure

contracts define a develop- ment team’s

responsibilities with respect to those incidents, thus

allowing for integration of machine learning with

incident SLO guarantees. These concepts

generalize the notion of a single SLO contract for a

service’s incidents with a given monitoring or

incident-response budget and enable observabil- ity

effectiveness to be measured in a manner

compatible with performance-on-demand

investments in AI models. Machine learning can be

deemed a valid investment as long as the ex-

pected savings exceed the associated cost. The full

aggregation of operating-overhead SLOs into a

market-like pricing for ser- vice owners enables

costs of expert incident-remediation users to be

factored into the incident SLO value for the owner

of the individual incident. The failure contract

aggregates an incident SLO into a total SLO for a

development team in terms of its incidents.

Regression, classification, and time-series

prediction models can be brought back into

predictive monitoring via incident-response

playbooks applying procedure maps; they help

Teams in relation to Deployment Changes. An

orga- nization’s telemetry infrastructure and

playbook mappings, covering general incident

detection, response playbooks, and time-to-remedy

estimation, determine whether any time-series

series can be acquired for predictive monitoring,

and the nature of any such plays, including planned

incident-remedy plays with learning and estimating

components.

III. PREDICTIVE MONITORING FOR

DEVOPS

Machine learning can anticipate incidents that

impact site reliability. Predictive monitoring

provides alerts that enable site reliability engineers

(SREs) to avert or mitigate problems before users

are affected, thus preserving both quality of

experience and user confidence. Forward-looking

predictions are integrated with incident response

playbooks to enhance the completeness and

rapidity of responses. Predictive monitoring closes

the information gap that hampers these operational

safety nets by applying time-series forecasting to

incident- related telemetry such as service-level

objectives (SLOs) for error rates, SLOs for latency

increases, deployment signals, and observability

indices. Such forecasts provide lead times on the

order of several hours and are practical to

produce on a daily basis. Complementing this

approach, machine learning techniques can aid

root-cause analysis (RCA) to help SREs

understand the underlying causes of incidents more

rapidly and accurately. Such analyses partly

automate the time-consuming process of

diagnosing incidents at scale, while also serving to

reduce recurrence rates through remediation

actions. Causality techniques from the field of

causal inference support more reliable conclusions

on root causes than feature attribution techniques

trained on incident-telemetry pairs, but the two

approaches are increasingly treated as

complementary. The fidelity and completeness of

the underlying telemetry remain critical to the

success of both predictive monitoring and

predictive root-cause analysis, reinforcing the

connections to earlier discussions on telemetry

data quality and architecture.

A. Time-series forecasting for incidents and

outages

Time-series forecasting models anticipate service

degrada- tion or outages in the next hours or

days, fitting the need for proactive incident

management. Publicly available incident records

support model training, research, and evaluation for

the entire incident life cycle. Models can

recommend preemptive actions based on

predicted outage type and location and be

integrated into incident response playbooks to

facilitate response prioritization. Timely

predictions enable allocation of experienced

resources during critical periods, focusing atten-

tion at runbook steps most likely to fail, and

speeding overall incident resolution. The models

draw on historical records of all incidents in

production services. Training uses past history to

predict future incidents, while a dedicated test set

evaluates out-of-sample seasonality adjustment.

Leading models support multi-horizon prediction,

where the next N incidents across the whole

organization are predicted N days in advance, with

varying degrees of granularity. Finally,

emergency incident

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2023
December

424

Fig. 4. Time series forecasting methods in

emergency contexts

types are predicted weeks in advance to trigger

long-lead-time preventive measures such as cloud-

region capacity adds.

B. Root-cause analysis with ML and causality

A crucial component of incident anticipation is

root-cause analysis and mitigation. While ML does

not replace root- cause analysis, it can augment

the process and make it more accessible. ML and

causality constitute powerful tools for incident

investigation and remediation, providing deeper

and broader insights into causes and enabling more

effective anticipation and avoidance of future

incidents. Several classes of causality-based ML

algorithms have emerged over the past decade and

have been applied successfully in domains such

as recommendation and medicine. These

algorithms operate on principle. A proxy for the

causal model — a structural causal model — is

learned together with a predictive model. A

perturbation (intervention) is introduced — e.g.,

simulating a drop in ads or changing HTML layout

— and the response of the outcome or target

(treatment) is estimated. The result of a

perturbation captures which features are causes (or

inhibitors) of a treatment response. These

analyses can be automated and applied

systematically, serving to surface associations

between all telemetry data and alerts, incidents,

and outages; support follow-up inquiries; and

guide remediation efforts by indicating relevant

features to tune, inspect, or monitor during future

incidents. Causality-based techniques mitigate a

common criticism of feature attribution

approaches, which focus on prediction accuracy

but do not consider explanatory power.

Explanatory power in a causal sense can be

quantified, allowing easy comparison of multiple

candidate models on this

Fig. 5. Aggregate Failure-Contract Cost

(Monthly)

Test Fail Prob. (p

i)

Severity (w

i)

T03 0.076 3

T05 0.353 3

T12 0.261 3

T02 0.184 3

T06 0.183 3

T04 0.203 2

T01 0.359 1

T09 0.154 2

T10 0.265 1

TABLE II

TEST SELECTION PRIORITY (VALUE DENSITY

RANKING)

balancing the cost of pause-and-resume operations

against the time savings. Marked A/B/n and

shadow tests are completed faster by concentrating

effort only on relevant configurations. Finally,

internal and external resources can be best

utilized by dedicated scheduling. Ordinarily

unused but cheap spare compute capacity — spot

instances — can be effectively harnessed for both

training and broader support tasks. Greater load

can be absorbed on open-source tools. Tools

known to consume more and/or be slower than

available alternatives can be sidelined, either

temporarily or permanently, for cost-sensitive

operations.

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2023
December

425

q

Σ Σ Σ

Equation 02: Multi-horizon quantile forecasting (operationally robust)

Pinball (quantile) loss. For residual u = y − y(q)

basis. However, as in other domains, causality-

based analyses rely on the quality of underlying

data.

IV. ML-DRIVEN PIPELINE

OPTIMIZATION

ρ (u) =
qu, u ≥ 0

(q − 1)u, u < 0

Objective over horizons & quantiles

(4)

ML is a technology for improving delivery velocity

and resource-use efficiency. Its application

enhances overall delivery speed while reducing the

costs of rushed delivery. Pipeline activities

generate signals that ML can exploit to identify

when success is doubted, and therefore when

costs of delivery can be relaxed. Trained gating

functions enable automatic stopping of risky

parts of the pipeline. Pruning of non-essential

build and test stages happens dynamically,

yt + h(q)minh = 1 Hq ∈ Q t

 ρq(yt+h − yt+h(q))

(5)

A. Continuous integration and delivery

optimization with ML

Machine Learning can help reduce the risk and

resource costs associated with Continuous

Integration (CI) and Contin- uous Delivery (CD).

In CI, the growing frequency of commits

can overwhelm the system and cause regressions.

ML can be used to analyze historic build and test

data to identify the changes and change

combinations that are more likely to break the

build, and gate builds based on the test history of

the changed components. When complete builds

become impracti- cal, Test Selection can be applied

to prune the test set. Machine Learning can also

prioritize tests based on their relation to reported

issues and failure patterns. Released software can

be A/B or N tested to guide risk-aware

experimentation. In CD, the decision to deploy can

be gated using signals from the production

environment. ML can help deploy to only a subset

of the deployment targets by finding valid anti-

affinity rules for the deployment targets and

predicting the probability of failure for the

deployment. Shallow shadow deployments can

also be enabled. Resources required for delivery

must be planned for; apart from having sufficient

capacity, systems must be able to scale up as

demand increases and make use of low-cost spot

instances. ML can assist by detecting traffic

patterns and automating scaling decisions. Tools

that are costly to use can also be avoided during

peak times.

B. Resource scheduling and cost-aware tooling

Autoscaling, the use of spot instances, and prudent

onboard- ing of tools and frameworks to balance

developer velocity and resource costs play an

important role in controlling operational costs

within DevOps. The right velocity and process

induce some experimentation to better understand

the cost–benefit ra- tio of each tool used and the

potential monthly or daily impact on the cloud bill.

This effort should be aligned with the overall costs

associated with deployment and running the

product being built or maintained, considering that

every process can naturally execute at different

speeds, and the associated costs can be higher or

lower depending on the cost–risk trade-off of a

given function or business. As emphasized in

section 4.2, controlling costs without

compromising higher-order quality levels in

production and observability remains one of the

most important guiding principles behind a mature

Site Reliability Engineering (SRE) practice.

V. MODEL LIFECYCLE AND GOVERNANCE

IN DEVOPS

The model lifecycle is an integral part of a DevOps

setup. Just as application code, models require a

defined practice for continuous monitoring,

validation, and deployment, enabling changes in

feature extraction and model configuration or

architecture to be handled in a controlled way. It is

equally important to allow experimentation with

different types of models and provide governance

for those experiments while making it easy to

understand and reproduce the experimental setup

and results. Traditionally, governance around

machine learning has been quite loose or

nonexistent. Many compa- nies rely on “shadow”

production deployments to monitor a model’s

performance before promoting it into production.

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2023
December

426

The decisions about promotion, however, are often

based on little more than gut feeling. Proper

governance implies that models are treated as part

of a business process, so that any decision to

change them can be documented, reviewed, win

approval,

Fig. 6. Model Lifecycle and Governance in

DevOps

and be audited in the future. The purpose of

auditing is to ensure compliance with the

documented process and check whether it results in

better decisions. The following elements allow a

strong governance framework to be established

within DevOps: data versioning and lineage,

experiment cataloging and validation, defined

deployment strategies, and ML signal integration.

Difficulties caused by the lack of a strong gov-

ernance framework stem from many sources. Even

if models are quality tested, a poor data pipeline

may lead to suspicious results as soon as the

model is deployed into production. It is therefore

critical to keep track of the data used for training

and monitoring the model so that it can be properly

examined when issues are detected. Reasons for

failure can stem from a model flying under the

radar, wasting CPU cycles for little return, or

introducing harm when it is need-driven. Clear exit

criteria and early-warning signals mitigate these

issues.

A. Data versioning, lineage, and reproducibility

Data versioning, lineage, and reproducibility are

essential for ML models embedded in CI/CD

pipelines. Datasets, fea- ture assets, and derived

features should be listed in a data catalog linked to

the resources that use the assets. It should be

possible to trace the lineage of data used for

building, validating, and monitoring models.

Formal version control is essential for both

datasets used to build models and for feature assets

(which constitute a separately managed set of

signals). Model performance monitoring tools can

automate the registration of model performance

metrics. Access to the monitoring signals should be

easy and low-cost, allowing continuous model

validation. Continuous model monitoring enables

auto-remediation mechanisms: to replace a model

automatically if it stops meeting validation criteria,

the signal alerting the replacement should be made

available upstream. Data versioning, lineage

tracing, and formal version con- trol should also

support external experimentation. Machine

learning can make delivery faster, improve

resource usage, and boost engineering

productivity. These benefits can be achieved on

CI/CD pipelines if signals from previous runs

are used to prioritize tests, gates are added based

on business expectations, and model performance

is monitored for fast rollbacks. Because data and

model performance are them- selves change

signals, they are key to making experimentation

risk-aware and to trigger external experiments in

production. Connected to failed change signals,

alerts on data anomalies determine when it is

important to reproduce and validate the external

experiment. Iterations of ML models in external

experimentation that returns better performance

than the last version can trigger automatic

deployment.

B. Experimentation, validation, and

deployment strategies

Various strategies apply for ML model

deployment. Experimental-validation schemes

such as A/B/n testing, shadow deployment, or

rolling-out to a small fraction of users offer means

to minimize risk. Validation on a different dataset

can also help mitigate exposure while further

validating the model. A successful deployment can

trigger promotion to production; for instance, a

promotion pipeline may require at least a

prescribed performance C on records stored on the

validation dataset, and have the model evaluated on

the device and promoted to production

environments once performance exceeds that of the

model deployed earlier. These strategies are jointly

supported by data versioning and lineage. For

continuous testing and data-driven exploration, one

should be able to find the small areas in which an

experimental algorithm is worse than others, and

perform A/B/n testing or real shadow tests in these

decided areas. Periodically, for all algorithms up to

the current production model, the predictions must

also be evaluated in the context of other aspects

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2023
December

427

than metrics only (like runtime or memory

consumption), in order to know if any other

algorithm up to now is worth to deploy in real

cases at the moment, or any other combination of

them rather than only the main production one.

These principles align strategies for any new ideas.

VI. CONCLUSION

The combination of predictive monitoring and

Machine Learning-driven pipeline optimization

enables reliability guarantees while improving

delivery velocity and resource efficiency.

Predictive monitoring identifies incidents, and

deployment outages, anticipating their occurrence

and facilitating timely response. These benefits

rely on the availability of a wealth of quality

telemetry data covering all aspects of the

system, the business logic that drives service

reliability—incurred costs and accepted failure

probabilities—and the alignment with SLO

aggregation in the incident-response playbooks.

Conversely, the ML-driven approach to pipeline

optimization minimizes the impact of changes by

surfacing potential risks early, through CI and

CD gating, and refining testing efforts. The

integration of ML operations completes the

picture, ensuring reproducibility and correctness

throughout the pipeline. The whole chain thus

becomes more resilient, providing more direct

information on the root cause of incidents and,

crucially, on the causality behind them, all of

which significantly reduces time to remediation.

AI-augmented DevOps encompasses the growing

integration of AI among other tools and practices

toward fulfillment of the four main objectives of

automation maturity, service reliability, delivery

velocity, and risk-aware security

Fig. 7. Test Selection Priority by Value Density

Category USD

Before (C0) 200000.0

After (C1) 140000.0

ML Program Cost (C

ML)

35000.0

Net Benefit (D) 25000.0

integration, together with a natural evolution of

observability into predictive monitoring.

Concerning security, the growing integration of

security practices within DevOps enshrined by

the SDevOps acronym, as well as tools and

techniques to surface potential vulnerabilities,

constitute essential areas for further exploration.

AI augments, rather than replaces the human

element within these processes. Implemented

correctly, quality, safety, and the conscious

adoption of modern machine-learning-based tools

and processes should support generating business-

value, and in any case should not by themselves

represent a direct goal of any business initiative

within an organization. Development teams are

most certainly not the sole responsible for these

goals, the process is continuous and auditable

and DevOps teams, with engineering, product,

finance, sales, and support, are all accountable

for ensuring that product and service quality is

aligned with targets, at both product line and

business levels.

Equation 03: Investment rule for ML C0:

expected pre-ML cost,

C1: expected post-ML cost,

CML: cost of building/running ML.

D = (C0 − C1) − CML (6)

A. Emerging Trends

The goal of DevOps is the combination of

continuous speed and continuous reliability. AI-

augmented pipelines are an important piece, but

ultimately only form an ingredient for reliable

software delivery: a growing maturity of AI-

augmented automation also holds hope for greater

security and lower-cost supervision. The future of

Predictive Monitoring for DevOps, a driving

DevOps theme of anticipation, demands increasing

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2023
December

428

time-shifting of signals predictive of incidents and

failures upstream, as close to applications as

feasible. Predic- tive Monitoring for the integration

and deployment pipelines of automated software

development seeks to solve the complex machine

learning and data-informed Experiments of Artifi-

cial Intelligence problem in a principled way

for Software

Technology. For continuous hardware and/or

software vulner- ability management,

moreover, DevSecOps aims to shift the Cyber

Security DevOps signal closer to visualisation

at CI/CD pipeline error gates. Both delivery

velocity and security are only subsets of the

overall costs associated with AI-augmented

DevOps pipelines. The final potential gain,

with realistically smaller Hardware and/or

Software assets dedicated to CI/CD, is when

Risk Assessment of Cost is integrated with

the other minimisation objectives. Risk Trial

involves Choice of Trials to Best Access a

Minimised, Expected Value–cost Opening for

Production and Evolution of delivery

pipelines. Continuous su- pervision is always

needed to guide failing, exploring choices

towards the Success and World-Wide-

MostWard Potential Minimisation of Cost.

Watchput and Alert notifications are still

necessary to cope with Alert, and both

Machine Learning Development and Data-

Informed Experimentation need con- stant

support from Data Management and Data

Handling.

REFERENCES

[1] Awosika, T., Shukla, R. M., & Pranggono, B.

(2023). Transparency and Privacy: The Role

of Explainable AI and Federated Learning in

Financial Fraud Detection. arXiv. arXiv

[2] Gadi, A. L. The Role Of AI-Driven Predictive

Analytics In Automotive R&D: Enhancing

Vehicle Performance And Safety.

[3] Aljunaid, S. K. (2025). Explainable AI-

Driven Federated Learning Model for

Financial Fraud Detection. MDPI FinTech,

18(4), 179. MDPI

[4] Lahari Pandiri, ”Leveraging AI and Machine

Learning for Dynamic Risk Assessment in

Auto and Property Insurance Markets,”

International Journal of Innovative Research

in Electrical, Electronics, Instrumen- tation

and Control Engineering (IJIREEICE), DOI

10.17148/IJIREE-

ICE.2023.111212

[5] Awanife, S. (2025). Privacy-Preserving

Machine Learning in Financial Customer

Data: Trade-Offs Between Accuracy,

Security, and Personal- ization. American

Journal of Humanities and Social Sciences

Research (AJHSSR), 9(7), 132–141.

ResearchGate

[6] (2024). Privacy-Preserving Cross-Bank

Financial Crime Analytics at Scale (White

Paper). Secretarium & FutureFlow.

Secretarium

[7] Nandan, B. P., & Chitta, S. S. (2023).

Machine Learning Driven Metrology and

Defect Detection in Extreme Ultraviolet

(EUV) Lithog- raphy: A Paradigm Shift in

Semiconductor Manufacturing. Educational

Administration: Theory and Practice, 29 (4),

4555–4568.

[8] “Google Cloud and SWIFT pioneer advanced

AI and federated learning tech to help

combat payments fraud.” (2024, December

11). Google Cloud Blog.

[9] Koppolu, H. K. R., Sheelam, G. K., &

Komaragiri, V. B. (2023). Au- tonomous

Telecommunication Networks: The

Convergence of Agentic AI and AI-

Optimized Hardware. International Journal of

Science and Research (IJSR), 12(12), 2253-

2270.

[10] Nakagawa, T., & Sato, H. (2023). Cloud

DevOps automation using gen- erative AI for

predictive incident response. Journal of Cloud

Computing:

Advances, Systems and Applications, 12(1), 56–

69

[11] Kalisetty, S., & Singireddy, J. (2023).

Agentic AI in Retail: A Paradigm Shift in

Autonomous Customer Interaction and

Supply Chain Automa- tion. American

Advanced Journal for Emerging

Disciplinaries (AAJED) ISSN: 3067-4190,

1(1).

[12] Adapa, M. K. (2023). Predictive maintenance

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2023
December

429

modeling for industrial IoT pipelines using

ensemble learning. International Journal of

Emerging Technologies in Engineering

Research (IJETER), 11(5), 112–120.

[13] Lakkarasu, P. (2023). Generative AI in

Financial Intelligence: Unrav- eling its

Potential in Risk Assessment and

Compliance. International Journal of Finance

(IJFIN)-ABDC Journal Quality List, 36(6),

241-273.

[14] Iqbal, M., & Hussain, A. (2023). Machine-

learning-based anomaly detection in DevOps

telemetry data streams. Procedia Computer

Science, 229, 145–152.

[15] Patel, R., & Sharma, P. (2023). A

reinforcement-learning framework for

adaptive CI/CD resource allocation. Journal

of Intelligent & Fuzzy Systems, 44(3), 4175–

4189

[16] Kummari, D. N. (2023). Energy Consumption

Optimization in Smart Factories Using AI-

Based Analytics: Evidence from Automotive

Plants. Journal for Reattach Therapy and

Development Diversities. https://doi.

org/10.53555/jrtdd. v6i10s (2), 3572.

[17] Chen, Y., Zhou, H., & Li, M. (2023).

Intelligent log analytics for proactive failure

prediction in distributed systems. IEEE

Access, 11, 66732–66748.

https://doi.org/10.1109/ACCESS.2023.32889

94

[18] Sheelam, G. K. (2023). Adaptive AI

Workflows for Edge-to-Cloud Processing in

Decentralized Mobile Infrastructure. Journal

for Reattach Therapy and Development

Diversities. https://doi. org/10.53555/jrtdd.

v6i10s (2). 3570ugh Predictive Intelligence.

[19] Santos, J. F., & Almeida, R. (2023).

Continuous delivery optimization through

AI-assisted pipeline orchestration.

SoftwareX, 22, 101470.

https://doi.org/10.1016/j.softx.2023.101470

[20] Motamary, S. (2023). Integrating Intelligent

BSS Solutions with Edge AI for Real-Time

Retail Insights and Analytics. European

Advanced Journal for Science & Engineering

(EAJSE)-p-ISSN 3050-9696 en e- ISSN

3050-970X, 1(1).

[21] Mu¨ller, T., & Keller, L. (2023). Predictive

analytics for cloud infrastructure

optimization: A comparative study of deep-

learning models. Computers & Industrial

Engineering, 181, 109144.

https://doi.org/10.1016/j.cie.2023.109144

[22] Meda, R. (2023). Data Engineering

Architectures for Scalable AI in Paint

Manufacturing Operations. European Data

Science Journal (EDSJ) p-ISSN 3050-9572

en e-ISSN 3050-9580, 1(1).

[23] Moreschini, S., Pour, S., Lanese, I., Balouek-

Thomert, D., Bogner, J., Li, X., . . . Taibi, D.

(2023). AI techniques in the microservices

life-cycle: A systematic mapping study.

arXiv.

[24] Somu, B. (2023). Towards Self-Healing Bank

IT Systems: The Emer- gence of Agentic AI

in Infrastructure Monitoring and

Management. American Advanced Journal

for Emerging Disciplinaries (AAJED) ISSN:

3067-4190, 1(1).

[25] Mehdiyev, N., Majlatow, M., & Fettke, P.

(2023). Interpretable and explainable

machine learning methods for predictive

process monitoring: A systematic literature

review. arXiv.

[26] Inala, R. Revolutionizing Customer Master

Data in Insurance Technol- ogy Platforms:

An AI and MDM Architecture Perspective.

[27] Sriraman, G. (2023). A machine learning

approach to predict DevOps readiness and

adoption. Frontiers in Computer Science, 10,

Article 1214722.

