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Abstract—The DevOps cross-training model has become widespread in industry, with deep specialization in 

either produc- tion support or software engineering among teams in a service environment. Software Reliability 

Engineering (SRE) emphasizes a balance between these disciplines by aiming for minimal technical debt in 

production systems and aligning ownership with the engineering and product teams responsible for application 

reliability. Many organizations recognize the importance of Pre- dictive Monitoring to avoid production 

incidents and the use of Machine Learning for CI/CD optimization, as these can reduce alert noise and deal with 

the mail problem of Too Many Widgets. However, achieving AI-augmented DevOps requires AI-based 

Predictive Monitoring for Engineering and Site Reliability Engi- neering (SRE) teams, which covers delivery 

velocity and resource utilization. AI-augmented DevOps encompasses both Predictive Monitoring to avoid 

production incidents and Machine Learning- driven Continuous Integration/Continuous Delivery (CI/CD) Op- 

timization to improve delivery velocity and resource utilization. It is primarily expressed in terms of 

development and produc- tion environments of Software Development Life Cycle (SDLC) pipelines. These 

aspects are critical for minimizing Time to Detect (TTD) and Time to Recover (TTR) during incident response, 

and optimization with respect to Machine Learning models is essential to avoid over-engineering and needless 

expenses. Information Technology (IT) Decision Makers across all industries prioritize these areas of focus in 

2022–2023. AI-augmented DevOps is mainly articulated in terms of DevOps principles and Machine Learning 

utilization for Predictive Monitoring and CI/CD opti- mizations. 

Index Terms—AI-augmented DevOps, predictive monitoring, ML in SRE, time-series forecasting, root-cause 

ML, CI/CD optimization, data lineage, reproducibility. 

I. INTRODUCTION 

Reliably delivering software that meets both 

functional and quality requirements is a daunting 

challenge in practice, especially for organizations 

that strive to release software frequently. SRE 

principles prescribe Service Level Objectives to 

formalize and are expected to fulfill that reliability. 

Pre- dictive monitoring and ML-driven CI/CD 

optimization offer collaborating engineering teams 

novel means to proactively address these 

challenges. Monitoring of online systems is a 

precondition for the operational integrity and 

quality assur- ance of deployed software. 

Integrating AI in observability enables anticipating 

future incidents and outages to miti- gate their 

impact—and even to fulfil ultimate contracts by 

avoiding service disruptions. Similarly, ML 

applied to CI/CD pipelines enhances delivery 

velocity and resource consumption 

 

Fig. 1. AI and ML are Transforming DevOps 

by optimizing testing strategy, tooling design, and 

infras- tructure measurement and management. 

Such application of ML constitutes a natural 

extension of governances that aim to continually 

align real-world operations with real-world risk—

all the way through the software-engineering 

lifecycle, from experimentation and validation to 

deployment and repro- ducibility. In organizations 

characterized by a high degree of software-

engineering automation, the motivation for AI 

implementation revolves not so much around 
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augmenting technological capabilities but rather 

around risk mitigation: that is, an incremental, 

conservative, and natural evolution towards 

convenience and assurance on the engineering 

side. From this perspective, the intersection of 

containment of the overall Cost of Failure and of 

the overall Successfully Fulfilled Failure Contract 

provides an ideal focus for AI in observability and 

for AI in pipeline optimization, simply because 

explicit investments in observability and 

infrastructure support risk- aware software-

engineering practices. Predictive monitoring in 

particular privileges integration in incident response 

playbooks through actionability and anticipation 

modulo the natural tim- ing constraints of the 

continual real-time synthesis of incident forecasts. 

A. Motivation and scope 

Like many other industries Today’s financial 

institutions rely on services and technologies 

that are highly sensitive to availability and quality 

issues—as highlighted by grow- ing success in 

online banking, trading, and cryptocurrency 

services. Consequently, directors and senior 

management are 

compelled by the relevant supervisory authorities 

to ensure that services operate with a reliability 

level that is in line with stakeholders’ service-

level agreements. Furthermore, to reduce the 

impact of incidents, the services must be equipped 

with alert mechanisms capable of anticipating 

incidents and triggering suitable reaction 

procedures. Implementation of a predictive 

monitoring capability enables such anticipation 

and must therefore be a priority at the operating 

level. A natural objective for engineering teams 

specializing in building and running such services 

is to reach the highest possible level of 

governance, which aligns the delivery of 

technology and services with operational costs 

while optimizing delivery speed. Machine learning 

(ML) has the potential to address these two 

objectives coherently and efficiently, resulting in a 

better alignment between operational teams 

(responsible for running the services) and 

engineering teams (responsible for creating and 

evolving the services). 

B. Key concepts: DevOps, ML, and AI 

augmentation 

AI augmentation encompasses three main areas: 

the auto- matic execution of known tasks, the 

assistance of a human- centric (but not yet fully 

automatic or competent) task exe- cution, and the 

establishment of propitious conditions for the 

governance of these practices. In the DevOps 

context, this translates into the automation of the 

entire software delivery pipeline and system 

operation, information retrieval to assist the 

responsible personnel in decision making, and the 

evolu- tion of the organization toward a governance 

model capable of continuously verifying and 

validating the numerous artifacts generated by the 

DevOps practices. How can the ongoing 

integration of machine learning (ML) and AI 

technologies into the DevOps practice ecosystem 

be characterized? It is evident that a large part of 

the ongoing integration of ML techniques and tools 

into the DevOps practice ecosystem aims to 

enhance the velocity of delivering business value. 

The delivery monitor components are being 

progressively adapted to efficiently consider two 

key metrics that require non-trivial planning: the 

delivery cost and the incident-failure contract 

costs. How the predictive monitoring and ML-

driven pipeline optimization building blocks of the 

ML-augmented DevOps ecosystem address the 

aforementioned velocity-durability in- tegration 

dilemma has also been specified. 

II. FOUNDATIONS OF AI-DRIVEN 

OBSERVABILITY 

Data play a crucial role in enabling the practical 

application of AI to observability. Telemetry data 

can empower ML approaches to predictive 

monitoring for improved reliability. Sufficient 

volumes of well-structured, high-quality telemetry 

data across a wide range of systems and services is 

a precondition for time-series forecasting of 

incidents and outages, supported by a causality 

framework for ML-driven root-cause analysis. 

Telemetry data types and collection strategies 

embrace the full range of telemetry data: metrics, 

traces, logs, events, and security-related signals. 

Adequate fidelity and sampling of these data are 

vital to the effective identification and response 

to software-related incidents, 
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Fig. 2. Service Latency with Forecast and SLO 

Threshold 

 

Service Incidents 

(mo) 

SLO Target Uptime 

% 

Payments-

API 

5 99.95 

Orders-API 8 99.9 

Search 3 99.9 

Checkout-UI 6 99.95 

  

TABLE I 

SLO & FAILURE-CONTRACT COST BREAKDOWN 

security threats, and privacy violations. 

Observability, in the broader sense that includes 

predictive monitoring, can thus be understood as 

the effort to increase the confidence in software 

development and operation by, among other things, 

ensuring that sufficient amounts of high-quality 

telemetry data are available to enterprising data 

scientists seeking to solve key engineering 

problems. This requirement recasts the question of 

predictive monitoring in the context of engineering 

and business collaboration, since the telemetry data 

required to feed ML models deployed for 

predictive monitoring are the very same data assets 

needed to build predictive models for pipeline 

optimization, delivery efficiency, site reliability, 

and cost management; indeed, the ability to satisfy 

the reliability targets defined in such a 

collaboration can in turn be regarded as a 

contractual obligation. 

 

Equation 01: Telemetry & SLO exceedance 

probability Modeling assumption 

Y t + h | Ft ∼ N (yt + h, st + h2) 

(1) 

Tail probability derivation 

Pr(Y t + h > t | Ft) = 1 − Pr(Y t + h ≤ t | (2) 

Ft) = 1 − F (st + ht − yt + h) (3) 

 

A. Telemetry data types and collection 

strategies 

Issue explicit (and implicit) sources and kinds of 

telemetry data—metrics, traces, events, logs—and 

the strategies used to collect them. Emphasize 

factors that affect the fidelity of the raw data, such 

as sampling rates. Address data sampling and 

obfuscation in relation to confidentiality and 

privacy. Connect with the engineering incident-

management motivation and 

 

Fig. 3. Exceedance Probability P(Y¿τ) by 

Horizon 

with section 3.1. Data lineage—the logical flow of 

different data sources—and the capability to revert 

to previous versions of imminent-ML-data are a 

process-enabled necessity that, if undertaken, 

could enormously (help) improve the costs and 

timeliness of handling ML within a DevOps 

Environment. Kinds of AI and ML-Enabled data 

are important as they are not manually detailed or 

explored, or often neglected entirely; this crosses 

with optimized model life-cycle management. The 

emerging class of DevOps Policy Management 

Infrastructure tools enables continuous low-touch 

governance through con- tinuous classification of 

resources, data, models, and access while ensuring 

that auditing remains simple and low-cost. Some 

examples of these initiatives include Microsoft 

Azure’s Policy, AWS CloudFormation, Google’s 

Policy Library, and Open Policy Agent by Open 

Policy. Properly exposed data volume and detailed 

meta-data are monitored, and all activities 

performed against the environment are continually 

assessed through this infrastructure. 
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B. FC and SLO alignment for AI observability 

Factorized circuit cost serves as a pricing 

mechanism for valuable incidents, while failure 

contracts define a develop- ment team’s 

responsibilities with respect to those incidents, thus 

allowing for integration of machine learning with 

incident SLO guarantees. These concepts 

generalize the notion of a single SLO contract for a 

service’s incidents with a given monitoring or 

incident-response budget and enable observabil- ity 

effectiveness to be measured in a manner 

compatible with performance-on-demand 

investments in AI models. Machine learning can be 

deemed a valid investment as long as the ex- 

pected savings exceed the associated cost. The full 

aggregation of operating-overhead SLOs into a 

market-like pricing for ser- vice owners enables 

costs of expert incident-remediation users to be 

factored into the incident SLO value for the owner 

of the individual incident. The failure contract 

aggregates an incident SLO into a total SLO for a 

development team in terms of its incidents. 

Regression, classification, and time-series 

prediction models can be brought back into 

predictive monitoring via incident-response 

playbooks applying procedure maps; they help 

Teams in relation to Deployment Changes. An 

orga- nization’s telemetry infrastructure and 

playbook mappings, covering general incident 

detection, response playbooks, and time-to-remedy 

estimation, determine whether any time-series 

series can be acquired for predictive monitoring, 

and the nature of any such plays, including planned 

incident-remedy plays with learning and estimating 

components. 

III. PREDICTIVE MONITORING FOR 

DEVOPS 

Machine learning can anticipate incidents that 

impact site reliability. Predictive monitoring 

provides alerts that enable site reliability engineers 

(SREs) to avert or mitigate problems before users 

are affected, thus preserving both quality of 

experience and user confidence. Forward-looking 

predictions are integrated with incident response 

playbooks to enhance the completeness and 

rapidity of responses. Predictive monitoring closes 

the information gap that hampers these operational 

safety nets by applying time-series forecasting to 

incident- related telemetry such as service-level 

objectives (SLOs) for error rates, SLOs for latency 

increases, deployment signals, and observability 

indices. Such forecasts provide lead times on the 

order of several hours and are practical to 

produce on a daily basis. Complementing this 

approach, machine learning techniques can aid 

root-cause analysis (RCA) to help SREs 

understand the underlying causes of incidents more 

rapidly and accurately. Such analyses partly 

automate the time-consuming process of 

diagnosing incidents at scale, while also serving to 

reduce recurrence rates through remediation 

actions. Causality techniques from the field of 

causal inference support more reliable conclusions 

on root causes than feature attribution techniques 

trained on incident-telemetry pairs, but the two 

approaches are increasingly treated as 

complementary. The fidelity and completeness of 

the underlying telemetry remain critical to the 

success of both predictive monitoring and 

predictive root-cause analysis, reinforcing the 

connections to earlier discussions on telemetry 

data quality and architecture. 

A. Time-series forecasting for incidents and 

outages 

Time-series forecasting models anticipate service 

degrada- tion or outages in the next hours or 

days, fitting the need for proactive incident 

management. Publicly available incident records 

support model training, research, and evaluation for 

the entire incident life cycle. Models can 

recommend preemptive actions based on 

predicted outage type and location and be 

integrated into incident response playbooks to 

facilitate response prioritization. Timely 

predictions enable allocation of experienced 

resources during critical periods, focusing atten- 

tion at runbook steps most likely to fail, and 

speeding overall incident resolution. The models 

draw on historical records of all incidents in 

production services. Training uses past history to 

predict future incidents, while a dedicated test set 

evaluates out-of-sample seasonality adjustment. 

Leading models support multi-horizon prediction, 

where the next N incidents across the whole 

organization are predicted N days in advance, with 

varying degrees of granularity. Finally, 

emergency incident 
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Fig. 4. Time series forecasting methods in 

emergency contexts 

types are predicted weeks in advance to trigger 

long-lead-time preventive measures such as cloud-

region capacity adds. 

B. Root-cause analysis with ML and causality 

A crucial component of incident anticipation is 

root-cause analysis and mitigation. While ML does 

not replace root- cause analysis, it can augment 

the process and make it more accessible. ML and 

causality constitute powerful tools for incident 

investigation and remediation, providing deeper 

and broader insights into causes and enabling more 

effective anticipation and avoidance of future 

incidents. Several classes of causality-based ML 

algorithms have emerged over the past decade and 

have been applied successfully in domains such 

as recommendation and medicine. These 

algorithms operate on principle. A proxy for the 

causal model — a structural causal model — is 

learned together with a predictive model. A 

perturbation (intervention) is introduced — e.g., 

simulating a drop in ads or changing HTML layout 

— and the response of the outcome or target 

(treatment) is estimated. The result of a 

perturbation captures which features are causes (or 

inhibitors) of a treatment response. These 

analyses can be automated and applied 

systematically, serving to surface associations 

between all telemetry data and alerts, incidents, 

and outages; support follow-up inquiries; and 

guide remediation efforts by indicating relevant 

features to tune, inspect, or monitor during future 

incidents. Causality-based techniques mitigate a 

common criticism of feature attribution 

approaches, which focus on prediction accuracy 

but do not consider explanatory power. 

Explanatory power in a causal sense can be 

quantified, allowing easy comparison of multiple 

candidate models on this 

 

 

Fig. 5. Aggregate Failure-Contract Cost 

(Monthly) 

Test Fail Prob. (p 

i) 

Severity (w 

i) 

T03 0.076 3 

T05 0.353 3 

T12 0.261 3 

T02 0.184 3 

T06 0.183 3 

T04 0.203 2 

T01 0.359 1 

T09 0.154 2 

T10 0.265 1 

 

TABLE II 

TEST SELECTION PRIORITY (VALUE DENSITY 

RANKING) 

balancing the cost of pause-and-resume operations 

against the time savings. Marked A/B/n and 

shadow tests are completed faster by concentrating 

effort only on relevant configurations. Finally, 

internal and external resources can be best 

utilized by dedicated scheduling. Ordinarily 

unused but cheap spare compute capacity — spot 

instances — can be effectively harnessed for both 

training and broader support tasks. Greater load 

can be absorbed on open-source tools. Tools 

known to consume more and/or be slower than 

available alternatives can be sidelined, either 

temporarily or permanently, for cost-sensitive 

operations. 
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q 

  

Σ Σ Σ 

Equation 02: Multi-horizon quantile forecasting (operationally robust) 

Pinball (quantile) loss. For residual u = y − y(q) 

basis. However, as in other domains, causality-

based analyses rely on the quality of underlying 

data. 

IV. ML-DRIVEN PIPELINE 

OPTIMIZATION 

ρ (u) = 
qu, u ≥ 0 

(q − 1)u,  u < 0 

Objective over horizons & quantiles 

(4) 

ML is a technology for improving delivery velocity 

and resource-use efficiency. Its application 

enhances overall delivery speed while reducing the 

costs of rushed delivery. Pipeline activities 

generate signals that ML can exploit to identify 

when success is doubted, and therefore when 

costs of delivery can be relaxed. Trained gating 

functions enable automatic stopping of risky 

parts of the pipeline. Pruning of non-essential 

build and test stages happens dynamically, 

yt + h(q)minh = 1 Hq ∈ Q t

 ρq(yt+h − yt+h(q)) 

(5) 

A.  Continuous integration and delivery 

optimization with ML 

Machine Learning can help reduce the risk and 

resource costs associated with Continuous 

Integration (CI) and Contin- uous Delivery (CD). 

In CI, the growing frequency of commits 

can overwhelm the system and cause regressions. 

ML can be used to analyze historic build and test 

data to identify the changes and change 

combinations that are more likely to break the 

build, and gate builds based on the test history of 

the changed components. When complete builds 

become impracti- cal, Test Selection can be applied 

to prune the test set. Machine Learning can also 

prioritize tests based on their relation to reported 

issues and failure patterns. Released software can 

be A/B or N tested to guide risk-aware 

experimentation. In CD, the decision to deploy can 

be gated using signals from the production 

environment. ML can help deploy to only a subset 

of the deployment targets by finding valid anti-

affinity rules for the deployment targets and 

predicting the probability of failure for the 

deployment. Shallow shadow deployments can 

also be enabled. Resources required for delivery 

must be planned for; apart from having sufficient 

capacity, systems must be able to scale up as 

demand increases and make use of low-cost spot 

instances. ML can assist by detecting traffic 

patterns and automating scaling decisions. Tools 

that are costly to use can also be avoided during 

peak times. 

B. Resource scheduling and cost-aware tooling 

Autoscaling, the use of spot instances, and prudent 

onboard- ing of tools and frameworks to balance 

developer velocity and resource costs play an 

important role in controlling operational costs 

within DevOps. The right velocity and process 

induce some experimentation to better understand 

the cost–benefit ra- tio of each tool used and the 

potential monthly or daily impact on the cloud bill. 

This effort should be aligned with the overall costs 

associated with deployment and running the 

product being built or maintained, considering that 

every process can naturally execute at different 

speeds, and the associated costs can be higher or 

lower depending on the cost–risk trade-off of a 

given function or business. As emphasized in 

section 4.2, controlling costs without 

compromising higher-order quality levels in 

production and observability remains one of the 

most important guiding principles behind a mature 

Site Reliability Engineering (SRE) practice. 

V. MODEL LIFECYCLE AND GOVERNANCE 

IN DEVOPS 

The model lifecycle is an integral part of a DevOps 

setup. Just as application code, models require a 

defined practice for continuous monitoring, 

validation, and deployment, enabling changes in 

feature extraction and model configuration or 

architecture to be handled in a controlled way. It is 

equally important to allow experimentation with 

different types of models and provide governance 

for those experiments while making it easy to 

understand and reproduce the experimental setup 

and results. Traditionally, governance around 

machine learning has been quite loose or 

nonexistent. Many compa- nies rely on “shadow” 

production deployments to monitor a model’s 

performance before promoting it into production. 
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The decisions about promotion, however, are often 

based on little more than gut feeling. Proper 

governance implies that models are treated as part 

of a business process, so that any decision to 

change them can be documented, reviewed, win 

approval, 

 

Fig. 6. Model Lifecycle and Governance in 

DevOps 

and be audited in the future. The purpose of 

auditing is to ensure compliance with the 

documented process and check whether it results in 

better decisions. The following elements allow a 

strong governance framework to be established 

within DevOps: data versioning and lineage, 

experiment cataloging and validation, defined 

deployment strategies, and ML signal integration. 

Difficulties caused by the lack of a strong gov- 

ernance framework stem from many sources. Even 

if models are quality tested, a poor data pipeline 

may lead to suspicious results as soon as the 

model is deployed into production. It is therefore 

critical to keep track of the data used for training 

and monitoring the model so that it can be properly 

examined when issues are detected. Reasons for 

failure can stem from a model flying under the 

radar, wasting CPU cycles for little return, or 

introducing harm when it is need-driven. Clear exit 

criteria and early-warning signals mitigate these 

issues. 

A. Data versioning, lineage, and reproducibility 

Data versioning, lineage, and reproducibility are 

essential for ML models embedded in CI/CD 

pipelines. Datasets, fea- ture assets, and derived 

features should be listed in a data catalog linked to 

the resources that use the assets. It should be 

possible to trace the lineage of data used for 

building, validating, and monitoring models. 

Formal version control is essential for both 

datasets used to build models and for feature assets 

(which constitute a separately managed set of 

signals). Model performance monitoring tools can 

automate the registration of model performance 

metrics. Access to the monitoring signals should be 

easy and low-cost, allowing continuous model 

validation. Continuous model monitoring enables 

auto-remediation mechanisms: to replace a model 

automatically if it stops meeting validation criteria, 

the signal alerting the replacement should be made 

available upstream. Data versioning, lineage 

tracing, and formal version con- trol should also 

support external experimentation. Machine 

learning can make delivery faster, improve 

resource usage, and boost engineering 

productivity. These benefits can be achieved on 

CI/CD pipelines if signals from previous runs 

are used to prioritize tests, gates are added based 

on business expectations, and model performance 

is monitored for fast rollbacks. Because data and 

model performance are them- selves change 

signals, they are key to making experimentation 

risk-aware and to trigger external experiments in 

production. Connected to failed change signals, 

alerts on data anomalies determine when it is 

important to reproduce and validate the external 

experiment. Iterations of ML models in external 

experimentation that returns better performance 

than the last version can trigger automatic 

deployment. 

B. Experimentation, validation, and 

deployment strategies 

Various strategies apply for ML model 

deployment. Experimental-validation schemes 

such as A/B/n testing, shadow deployment, or 

rolling-out to a small fraction of users offer means 

to minimize risk. Validation on a different dataset 

can also help mitigate exposure while further 

validating the model. A successful deployment can 

trigger promotion to production; for instance, a 

promotion pipeline may require at least a 

prescribed performance C on records stored on the 

validation dataset, and have the model evaluated on 

the device and promoted to production 

environments once performance exceeds that of the 

model deployed earlier. These strategies are jointly 

supported by data versioning and lineage. For 

continuous testing and data-driven exploration, one 

should be able to find the small areas in which an 

experimental algorithm is worse than others, and 

perform A/B/n testing or real shadow tests in these 

decided areas. Periodically, for all algorithms up to 

the current production model, the predictions must 

also be evaluated in the context of other aspects 
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than metrics only (like runtime or memory 

consumption), in order to know if any other 

algorithm up to now is worth to deploy in real 

cases at the moment, or any other combination of 

them rather than only the main production one. 

These principles align strategies for any new ideas. 

VI. CONCLUSION 

The combination of predictive monitoring and 

Machine Learning-driven pipeline optimization 

enables reliability guarantees while improving 

delivery velocity and resource efficiency. 

Predictive monitoring identifies incidents, and 

deployment outages, anticipating their occurrence 

and facilitating timely response. These benefits 

rely on the availability of a wealth of quality 

telemetry data covering all aspects of the 

system, the business logic that drives service 

reliability—incurred costs and accepted failure 

probabilities—and the alignment with SLO 

aggregation in the incident-response playbooks. 

Conversely, the ML-driven approach to pipeline 

optimization minimizes the impact of changes by 

surfacing potential risks early, through CI and 

CD gating, and refining testing efforts. The 

integration of ML operations completes the 

picture, ensuring reproducibility and correctness 

throughout the pipeline. The whole chain thus 

becomes more resilient, providing more direct 

information on the root cause of incidents and, 

crucially, on the causality behind them, all of 

which significantly reduces time to remediation. 

AI-augmented DevOps encompasses the growing 

integration of AI among other tools and practices 

toward fulfillment of the four main objectives of 

automation maturity, service reliability, delivery 

velocity, and risk-aware security 

 

 

Fig. 7. Test Selection Priority by Value Density 

 

Category USD 

Before (C0) 200000.0 

After (C1) 140000.0 

ML Program Cost (C 

ML) 

35000.0 

Net Benefit (D) 25000.0 

 

integration, together with a natural evolution of 

observability into predictive monitoring. 

Concerning security, the growing integration of 

security practices within DevOps enshrined by 

the SDevOps acronym, as well as tools and 

techniques to surface potential vulnerabilities, 

constitute essential areas for further exploration. 

AI augments, rather than replaces the human 

element within these processes. Implemented 

correctly, quality, safety, and the conscious 

adoption of modern machine-learning-based tools 

and processes should support generating business-

value, and in any case should not by themselves 

represent a direct goal of any business initiative 

within an organization. Development teams are 

most certainly not the sole responsible for these 

goals, the process is continuous and auditable 

and DevOps teams, with engineering, product, 

finance, sales, and support, are all accountable 

for ensuring that product and service quality is 

aligned with targets, at both product line and 

business levels. 

Equation 03: Investment rule for ML C0: 

expected pre-ML cost, 

C1: expected post-ML cost, 

CML: cost of building/running ML. 

 

D = (C0 − C1) − CML (6) 

A. Emerging Trends 

The goal of DevOps is the combination of 

continuous speed and continuous reliability. AI-

augmented pipelines are an important piece, but 

ultimately only form an ingredient for reliable 

software delivery: a growing maturity of AI- 

augmented automation also holds hope for greater 

security and lower-cost supervision. The future of 

Predictive Monitoring for DevOps, a driving 

DevOps theme of anticipation, demands increasing 
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time-shifting of signals predictive of incidents and 

failures upstream, as close to applications as 

feasible. Predic- tive Monitoring for the integration 

and deployment pipelines of automated software 

development seeks to solve the complex machine 

learning and data-informed Experiments of Artifi- 

cial Intelligence problem in a principled way 

for Software 

Technology. For continuous hardware and/or 

software vulner- ability management, 

moreover, DevSecOps aims to shift the Cyber 

Security DevOps signal closer to visualisation 

at CI/CD pipeline error gates. Both delivery 

velocity and security are only subsets of the 

overall costs associated with AI-augmented 

DevOps pipelines. The final potential gain, 

with realistically smaller Hardware and/or 

Software assets dedicated to CI/CD, is when 

Risk Assessment of Cost is integrated with 

the other minimisation objectives. Risk Trial 

involves Choice of Trials to Best Access a 

Minimised, Expected Value–cost Opening for 

Production and Evolution of delivery 

pipelines. Continuous su- pervision is always 

needed to guide failing, exploring choices 

towards the Success and World-Wide-

MostWard Potential Minimisation of Cost. 

Watchput and Alert notifications are still 

necessary to cope with Alert, and both 

Machine Learning Development and Data-

Informed Experimentation need con- stant 

support from Data Management and Data 

Handling. 
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