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Abstract

The quantization of electric charge is re-examined within a geometric framework that extends the Hamiltonian
formalism to curved spacetime with electromagnetic coupling. By employing the covariant Klein—Gordon
equation under minimal coupling and curvature interaction, the study reveals that discrete charge values can arise
naturally from geometric phase and holonomy constraints rather than being postulated externally. The analysis
demonstrates that the coupling between curvature and electromagnetic flux produces quantized charge spectra
governed by integer topological indices. This geometric mechanism also explains the inherent symmetry between
positive and negative charges as a manifestation of spacetime duality. The formalism reduces smoothly to standard
quantum field theory in the flat-space limit, ensuring full compatibility with established results. Overall, the
findings suggest that spacetime curvature acts as a “natural quantizer,” transforming continuous field variables
into discrete charge states and providing a pathway toward unifying electromagnetism with gravitation under a
single geometric principle.
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1. Introduction
The quantization of electric charge in elementary particles has been a fundamental subject in modern theoretical
physics. Since the early developments of quantum electrodynamics (QED) and relativistic field theory, elucidating
the discrete character of charge has remained conceptually unresolved within the conventional flat-spacetime
framework. Classical frameworks such as the Dirac equation and the Standard Model effectively clarify
interactions among charged particles; yet, they do not provide a fundamental explanation for the discrete nature of
electric charge itself [1-3]. Quantum field theory (QFT) regards charge as an intrinsic property of the Lagrangian,
rather than as an emergent phenomenon influenced by geometry or gravitation [4,5].

Recent progress in high-energy astrophysics and theoretical cosmology has renewed interest in investigating
whether the origin of charge may be geometric. Studies on strong-field environments and curved spacetimes have
demonstrated that geometry can affect both particle propagation and quantization conditions [6—8]. In some cases,
curvature introduces additional degrees of freedom that alter the canonical structure of field theories.

When the Hamiltonian formalism is employed in curved backgrounds, the interaction with electric fields alters
the classical commutation relations, leading to nontrivial quantization effects absent in flat spacetime [9-12].
These corrections are particularly significant in regions with strong gravitational potentials, such as (black-hole
horizons or the early universe, where conventional notions of flatness and global symmetry are inapplicable
[13,14].

Within this geometric framework, the concept of charge may originate from the fundamental structure of
spacetime itself. Prior research has investigated similar concepts through frameworks including Dirac's magnetic
monopole, extended gauge invariance, and topological field theories [17-20]. For instance, Dirac's quantization
requirement linked the existence of monopoles to the discreteness of charge. Later developments in string theory
and loop quantum gravity have expanded on this idea by showing that topological and geometric constraints can
control quantized fluxes or charges [21-23]. In these methods, charge is not a random quantum number; rather, it
is an emergent property of the topology of spacetime.
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This interpretation is consistent with generalized Hamiltonian formulations in curved manifolds, wherein
electromagnetic interactions explicitly rely on the metric tensor (guv)) and the curvature scalar [24,25]. When the
electromagnetic field tensor is introduced into the electromagnetic field tensor to a curved background, the
canonical momenta change through covariant derivatives. This results in discrete eigenvalue spectra associated
with geometric invariants [26—28]. These results imply that the charge ratios of particle families may arise via
quantization induced by curvature. This correlation may clarify the recurring proportionalities between leptons
and quarks [29-31].

Theoretical investigations have utilized this reasoning in the context of the Klein—Gordon and Dirac equations
within curved spaces, illustrating that geometry can provide effective potentials that mimic quantization scenarios
similar to those observed in compactified higher-dimensional models [32-34]. Semiclassical simulations in
slightly curved spacetimes show that even small changes in curvature can cause effective charge distributions to
develop discrete levels [35,36]. These findings suggest that charge may not be an intrinsic characteristic, but rather
a consequence of geometric constraints on field solutions [37].

This research utilizes the Hamiltonian formalism in curved spacetime with explicit electric field coupling to
formulate quantization conditions that directly incorporate curvature effects, based on the aforementioned findings.
This method allows for extensive metric dependency and diverse field strengths, distinguishing it from previous
flat-space studies, therefore providing a more precise representation of high-curvature astrophysical and
cosmological settings [38—40]. The equations demonstrate that two distinct quantum indices, one pertaining to
curvature and the other to field intensity, can be associated with quantized charge states. The configuration of
these indices resembles atomic spectra, however, the structure it originates from the structure of spacetime itself
[41-43].

The consequences of this approach extend beyond particle physics. If spacetime curvature influences charge
quantization, then regions characterized by significant curvature, such as the early universe or proximity to black
holes, may exhibit charge distributions that deviate from expectations or slight deviations from charge neutrality
[44—46]. These effects might link the concepts of electromagnetism and gravitation, consistent with Einstein’s
unification attempts and subsequent unified field theories in their pursuit of a shared geometric foundation [47—
49].

In summary, conventional quantum field theory regards charge as a static intrinsic constant, whereas
contemporary geometric methodologies demonstrate that it is a dynamic quantity influenced by the geometry and
curvature of spacetime. This research seeks to formalize the concept through a curved-space Hamiltonian
framework incorporating electromagnetic coupling, demonstrating how curvature and field interactions can yield
discrete charge spectra that conform to established physical symmetries. This work contributes to the broader goal
of integrating quantum physics and general relativity into a unified, geometry-focused paradigm [50-52].

2. Theoretical Framework

2.1. Covariant Hamiltonian in Curved Spacetime

In curved spacetime, the canonical formulation of a charged scalar field 1 is governed by a generalized
Hamiltonian that incorporates both curvature and electromagnetic effects.

Starting from the Lagrangian density:
2.2

L—l‘“’D *(D —lm—+R| 12 1
= 29" D) D) — 5 +ER) 1Y 12, (1)

where D, =V, + ihicAuiS the gauge—covariant derivative, A,is the four—potential, Ris the curvature scalar, and

&denotes the curvature—coupling parameter.
The conjugate momentum is defined as:

R AR e
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leading to the Hamiltonian density:

. 1 .. q q 1 ., ,, 1 )
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Equation (3) generalizes the flat—space Hamiltonian to include spacetime curvature. The additional term &R |
¥ |?introduces a curvature-induced potential that modifies the quantization spectrum.

2.2. Klein—-Gordon Equation with Minimal Coupling

Varying the action S = [ \/—g £ d*xwith respect to 1*gives the covariant Klein—~Gordon equation:
m2c?
[9"'DuDy + ==+ ERIP =0. (&)
Expanding the derivative term and separating time and spatial parts yields:

1 9 2
5 (ih=-— b)Y =~V + Zith VY + Z—ZAZI/) + m2c2y + h2ER. )
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For static backgrounds, substituting the stationary—state ansatz Y (r,t) = @(r)e gives:

2
T a2 4 m2c2 4 h2&R]p = E . (6)

L 4
[-h2V? + 2ih—A -V + —
c c?

Equation (6) defines a curved—space energy eigenvalue problem, in which curvature Rand the electromagnetic
vector potential Ajointly influence the allowed discrete energy levels.

2.3. Curvature-Induced Quantization and Effective Confinement
In the early universe or near strong gravitational fields, spacetime can be approximated locally as a compact

domain of effective radius Resr
Imposing boundary conditions such as:
@(r + 2Reid) = e'Pop(1), (7
yields a quantization of spatial modes:
nm
ky=—mn=123,.. )
Resr

so that the corresponding energy levels become:
EZ = m?c* + h%c%k2 + h%c%éR. )

At small scales (high curvature), the term A2c?&Rshifts the ground—state energy upward, modifying the effective
spacing between quantized levels.
broader goal viewed as a geometric analogue of the zero—point energy correction.

2.4. Gauge Holonomy and Charge Quantization
To maintain single—valuedness of the wavefunction around any closed spacetime loop y, the total accumulated
phase must satisfy:

¥ = 1 exp (i%jEA”dx“) S, (10)

which directly gives the holonomy condition:

q
EﬁAudx“ =2nf, L € L. (11)
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If the loop encloses a magnetic or effective curvature—induced flux
¢, = fz F,,dZ*’, we obtain:

q @, =2nhct, (12)
and hence,
2mhc
@=a-t (1)

Equation (13) implies that charge takes on discrete values determined by integer topological indices and the total
flux through the curved manifold.
Positive and negative charge states correspond naturally to £ = +1, 12, ..., ensuring charge conjugation symmetry.

2.5. Energy—Charge Coupling Relation
Combining Eqgs. (9) and (13) allows one to express the energy spectrum as a function of curvature and quantized
charge:
2
nm
EZ, = m2ct + h2c?(mn)? + R2C2ER + L (A2), (14
' Regr c

Equation (14) reveals a coupled quantization: spatial confinement (n) and holonomy index (£) simultaneously
define both the charge and the energy levels.
At the limit R — Oand A, — 0, the model reduces smoothly to the standard relativistic dispersion E 2 =m2c* +

2.2
pece.

2.6. Geometric Interpretation

The curvature scalar R acts as a regulator linking geometry and charge discreteness.
In regions where (R > 0, corresponding to a closed geometry), the allowed charges are more widely spaced; in
nearly flat or open geometries (( R=0~ ), the spectrum becomes quasi—continuous.
This behavior provides a natural geometric interpretation for why electric charge appears quantized under confined
or curved conditions but continuous in idealized flat models.

2.7. Limit of Flat Spacetime
In the Minkowski limit g,,,, = 1,,and R - 0, the additional curvature and holonomy terms vanish:

lim g, = constant = e, lRirr}) Enp=m2c* + h2c?k2. (15)

R-0

Thus, the formalism remains consistent with standard quantum electrodynamics (QED) while generalizing it to
curved backgrounds.

Summary of Section

This framework shows that charge quantization can be derived from the combined effects of boundary
confinement, curvature—dependent Hamiltonian dynamics, and gauge holonomy.

The key insight is that charge is not an externally imposed constant but a discrete geometric quantity defined by
integer indices (n, ¥)and curvature R. Curvature acts as a “natural quantizer,” transforming continuous field
degrees of freedom into discrete charge states consistent with the observed particle spectrum.

3. Discussion

The results derived from the curved-space Hamiltonian formulation demonstrate that electric charge quantization
can emerge directly from geometric and topological constraints rather than from arbitrary assumptions. Equations
(11)-(14) reveal that the combined effects of curvature R, spatial confinement R, and electromagnetic holonomy
®, produce discrete spectra of admissible charges.

This interpretation aligns with the long-standing idea that the fundamental constants of nature may reflect
boundary conditions imposed by the universe’s geometry, rather than arbitrary parameters introduced by hand.
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3.1. Geometric Mechanism of Charge Discreteness

The holonomy constraint in Eq. (12) establishes a quantization rule for the gauge phase accumulated along closed
loops in curved spacetime. In a simply connected flat manifold, this phase can be continuously deformed to zero;
however, in a curved or topologically non-trivial manifold, the loop integral retains a finite invariant, resulting in
quantized flux.

The proportionality g, = 2mhc £/®, shows that the discreteness of charge arises from the topology of field lines
embedded in a curved manifold. Thus, charge is an emergent property of the field geometry itself-a quantized
response to spacetime curvature.

This view complements earlier topological models such as Dirac’s monopole and Chern—Simons theories, but
differs in that the quantization is obtained from the Hamiltonian boundary conditions rather than from imposed
singularities.

The curvature term éRplays the role of a continuous regulator that links the scale of quantization to the local
geometry.

3.2. Symmetry Between Positive and Negative Charges

The model naturally reproduces charge conjugation symmetry.

For each allowed value +#, there exists a corresponding state —¢producing opposite charge signs.This duality
ensures charge conservation at the vacuum level without invoking separate particle species or external
conservation laws. It offers a geometric picture for the coexistence of electrons and positrons as symmetric modes
of the same underlying field.

In this sense, matter—antimatter balance can be viewed as a manifestation of the inherent parity of the spacetime
manifold rather than a result of particle—level interactions.

3.3. Curvature as an Energy Regulator

Equation (14) implies that curvature contributes a stabilizing correction to the relativistic energy spectrum. At
ultra-relativistic limits, the kinetic term A2c?kZ2dominates and would diverge for arbitrarily high n, but the positive
curvature term A2c?&Rintroduces a geometric cutoff. Physically, this mechanism can prevent unbounded energy
growth, providing a natural explanation for the observed saturation of cosmic-ray spectra and the finite evaporation
rate of black holes.

The curvature term, therefore serves as a geometric regulator linking local geometry to energy quantization.

3.4. Cosmological and Astrophysical Implications

In the early universe, the effective curvature radius was small, R ~ 1073 m, and the scalar curvature Rlarge.
Under such conditions, Egs. (9)—(14) predict that the elementary (Aq = q,4+1 — q») would have been significantly
larger than today, implying that charge quantization was larger in magnitude during the Planck epoch. As the
universe expanded and curvature diminished, @, increased, driving Aq — e— the present elementary charge.
This evolution hints at a cosmological stabilization of charge quantization as curvature relaxed, a scenario
compatible with grand-unified cosmologies [44—46].

In compact astrophysical objects such as magnetars or near the event horizons of black holes, local curvature and
magnetic flux densities are high enough that slight deviations in charge density might arise from Eq. (13). Although
such differences would be extremely small

(< 10722¢), they could, in principle, influence pair-production rates or contribute to asymmetries in jet emission
observed in active galactic nuclei.

3.5. Analogous Condensed-Matter and Photonic Systems

Curved-space analogs can be realized in laboratory platforms where effective curvature and gauge fields are
engineered. For instance, in graphene sheets under strain or in topological photonic lattices, the metric tensor
becomes position-dependent, and artificial vector potentials can reproduce the covariant derivative of Eq. (4).
Charge-like quantization effects have been observed in such systems through discrete conductance plateaus and
quantized phase vortices, lending indirect support to the geometric mechanism proposed here. Similarly, optical
micro-resonators with spatially varying refractive indices can simulate the confinement and holonomy conditions
responsible for discrete spectral lines in this theory.

3.6. Relation to Gauge Invariance and Conservation Laws

Within this model, gauge invariance remains exact: the Hamiltonian in Eq. (3) is covariant under the local
transformation
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However, when the spacetime manifold has non-trivial topology, A(x)may not be globally single-valued, leading
to a quantization condition for g to  preserve single-valued  physical  observables.
This geometric interpretation unifies charge conservation with the structure of spacetime: the conserved current

JH = % [Y*D¥yp — (D*p)*yplautomatically satisfies V,,J# = Oas a consequence of the metric connection. Thus,

conservation arises not from an imposed symmetry but from the differential geometry of the manifold itself.

3.7. Experimental and Numerical Viewpoints

It is not yet possible to directly measure charge quantization caused by curvature, but it is possible to test it
indirectly. High-precision spectroscopy in strong-gravity environments, as those near magnetars, may uncover
minute aberrations in spectral line splitting that correlate to curvature-dependent charge shifts. Also, numerical
simulations that combine general relativity with quantum electrodynamics may reveal whether discrete charge
states emerge when the curvature and flux are very high.
Curved graphene, photonic micro-cavities, and cold-atom lattices are examples of artificial analogs that create
programmable  environments  where  boundary-driven  quantization can be seen  directly.
3.8. Conceptual Consequences

Understanding charge as an emergent geometric characteristic alters the concept of '"elementary."
Mass, spin, and charge, which have historically been seen as basic properties, may instead be signs of field
topology and curvature. In this perspective, electromagnetism is not a distinct interaction but a low-energy
manifestation of spacetime geometry. The model thus aids the extensive pursuit of a geometric unification of
forces, reflecting Einstein's initial vision while being rooted in contemporary quantum formalism.

Summary of the Section

The natural emergence of charge quantization is a consequence of the interplay between geometry, topology, and
gauge symmetry restrictions. Curvature determines permissible energy scales, boundary conditions govern spatial
quantization, and holonomy guarantees phase discreteness. When you put them together, they make a self-
consistent picture in which electric charge is a geometric resonance built into the structure of spacetime.

4. Conclusion

This paper has developed a geometric framework for charge quantization utilizing a curved-space Hamiltonian
with electromagnetic coupling. We showed that discrete charge values come from the boundary and topological
restrictions of spacetime by expanding the covariant Klein—Gordon equation to include curvature and holonomy
effects.

The resulting quantization law, articulated via integer holonomy indices and curvature-dependent flux, obviates
the necessity for arbitrary postulates on the discreteness of charge.

The study shows that curvature works as both a quantizer and a regulator. It keeps the field spectrum in discrete
modes and keeps relativistic particles from diverging at high energy limits.

Opposite charge signs arise symmetrically from a common geometric origin, hence maintaining vacuum neutrality
and total charge conservation. This duality implies that matter-antimatter complementarity is an inherent
characteristic of spacetime topology rather than a natural manifestation of particles. The framework is still in line
with quantum electrodynamics in the flat-space limit, and it links well with established quantization constraints
like the Dirac monopole relation.

Its broader implication is that quantization—be it of energy, charge, or space—mirrors the discrete structure of
spacetime itself. If corroborated by subsequent observations or analogous experiments, this methodology may
facilitate the unification of electromagnetic and gravitational phenomena within a cohesive geometric framework.
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