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Abstract 

The quantization of electric charge is re-examined within a geometric framework that extends the Hamiltonian 

formalism to curved spacetime with electromagnetic coupling. By employing the covariant Klein–Gordon 

equation under minimal coupling and curvature interaction, the study reveals that discrete charge values can arise 

naturally from geometric phase and holonomy constraints rather than being postulated externally.  The analysis 

demonstrates that the coupling between curvature and electromagnetic flux produces quantized charge spectra 

governed by integer topological indices. This geometric mechanism also explains the inherent symmetry between 

positive and negative charges as a manifestation of spacetime duality.  The formalism reduces smoothly to standard 

quantum field theory in the flat-space limit, ensuring full compatibility with established results. Overall, the 

findings suggest that spacetime curvature acts as a “natural quantizer,” transforming continuous field variables 

into discrete charge states and providing a pathway toward unifying electromagnetism with gravitation under a 

single geometric principle.  
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1. Introduction 

The quantization of electric charge in elementary particles has been a fundamental subject in modern theoretical 

physics.  Since the early developments of quantum electrodynamics (QED) and relativistic field theory, elucidating 

the discrete character of charge has remained conceptually unresolved within the conventional flat-spacetime 

framework.  Classical frameworks such as the Dirac equation and the Standard Model effectively clarify 

interactions among charged particles; yet, they do not provide a fundamental explanation for the discrete nature of 

electric charge itself [1–3].  Quantum field theory (QFT) regards charge as an intrinsic property of the Lagrangian, 

rather than as an emergent phenomenon influenced by geometry or gravitation [4,5]. 

 Recent progress in high-energy astrophysics and theoretical cosmology has renewed interest in investigating 

whether the origin of charge may be geometric.  Studies on strong-field environments and curved spacetimes have 

demonstrated that geometry can affect both particle propagation and quantization conditions [6–8].  In some cases, 

curvature introduces additional degrees of freedom that alter the canonical structure of field theories. 

 When the Hamiltonian formalism is employed in curved backgrounds, the interaction with electric fields alters 

the classical commutation relations, leading to nontrivial quantization effects absent in flat spacetime [9–12].  

These corrections are particularly significant in regions with strong gravitational potentials, such as (black-hole 

horizons or the early universe, where conventional notions of flatness and global symmetry are inapplicable 

[13,14]. 

 

 Within this geometric framework, the concept of charge may originate from the fundamental structure of 

spacetime itself.  Prior research has investigated similar concepts through frameworks including Dirac's magnetic 

monopole, extended gauge invariance, and topological field theories [17–20].  For instance, Dirac's quantization 

requirement linked the existence of monopoles to the discreteness of charge.  Later developments in string theory 

and loop quantum gravity have expanded on this idea by showing that topological and geometric constraints can 

control quantized fluxes or charges [21–23].  In these methods, charge is not a random quantum number; rather, it 

is an emergent property of the topology of spacetime. 
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 This interpretation is consistent with generalized Hamiltonian formulations in curved manifolds, wherein 

electromagnetic interactions explicitly rely on the metric tensor (g₍μν₎) and the curvature scalar [24,25].  When the 

electromagnetic field tensor is introduced into the electromagnetic field tensor to a curved background, the 

canonical momenta change through covariant derivatives.  This results in discrete eigenvalue spectra associated 

with geometric invariants [26–28].  These results imply that the charge ratios of particle families may arise via 

quantization induced by curvature.  This correlation may clarify the recurring proportionalities between leptons 

and quarks [29–31]. 

 

 Theoretical investigations have utilized this reasoning in the context of the Klein–Gordon and Dirac equations 

within curved spaces, illustrating that geometry can provide effective potentials that mimic quantization scenarios 

similar to those observed in compactified higher-dimensional models [32–34].  Semiclassical simulations in 

slightly curved spacetimes show that even small changes in curvature can cause effective charge distributions to 

develop discrete levels [35,36].  These findings suggest that charge may not be an intrinsic characteristic, but rather 

a consequence of geometric constraints on field solutions [37]. 

 

 This research utilizes the Hamiltonian formalism in curved spacetime with explicit electric field coupling to 

formulate quantization conditions that directly incorporate curvature effects, based on the aforementioned findings.  

This method allows for extensive metric dependency and diverse field strengths, distinguishing it from previous 

flat-space studies, therefore providing a more precise representation of high-curvature astrophysical and 

cosmological settings [38–40].  The equations demonstrate that two distinct quantum indices, one pertaining to 

curvature and the other to field intensity, can be associated with quantized charge states.  The configuration of 

these indices resembles atomic spectra, however, the structure it originates from the structure of spacetime itself 

[41–43]. 

 

 The consequences of this approach extend beyond particle physics.  If spacetime curvature influences charge 

quantization, then regions characterized by significant curvature, such as the early universe or proximity to black 

holes, may exhibit charge distributions that deviate from expectations or slight deviations from charge neutrality 

[44–46].  These effects might link the concepts of electromagnetism and gravitation, consistent with Einstein’s 

unification attempts and subsequent unified field theories in their pursuit of a shared geometric foundation [47–

49]. 

 

 In summary, conventional quantum field theory regards charge as a static intrinsic constant, whereas 

contemporary geometric methodologies demonstrate that it is a dynamic quantity influenced by the geometry and 

curvature of spacetime.  This research seeks to formalize the concept through a curved-space Hamiltonian 

framework incorporating electromagnetic coupling, demonstrating how curvature and field interactions can yield 

discrete charge spectra that conform to established physical symmetries.  This work contributes to the broader goal 

of integrating quantum physics and general relativity into a unified, geometry-focused paradigm [50–52]. 

 

2. Theoretical Framework 

2.1. Covariant Hamiltonian in Curved Spacetime 

In curved spacetime, the canonical formulation of a charged scalar field 𝜓 is governed by a generalized 

Hamiltonian that incorporates both curvature and electromagnetic effects. 

Starting from the Lagrangian density: 

ℒ =
1

2
𝑔𝜇𝜈(𝐷𝜇𝜓)

∗(𝐷𝜈𝜓) −
1

2
(
𝑚2𝑐2

ℏ2
+ 𝜉𝑅) ∣ 𝜓 ∣2, (1) 

 

where 𝐷𝜇 = ∇𝜇 + 𝑖
𝑞

ℏ𝑐
𝐴𝜇is the gauge–covariant derivative, 𝐴𝜇is the four–potential, 𝑅is the curvature scalar, and 

𝜉denotes the curvature–coupling parameter. 

The conjugate momentum is defined as: 

𝜋 =
∂ℒ

∂(∂𝑡𝜓)
= 𝑔0𝜈(𝐷𝜈𝜓)

∗, (2) 
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leading to the Hamiltonian density: 

ℋ = 𝜋𝜓̇ − ℒ =
1

2
𝑔𝑖𝑗(𝜋𝑖 −

𝑞

𝑐
𝐴𝑖)(𝜋𝑗 −

𝑞

𝑐
𝐴𝑗) +

1

2
𝑚2𝑐2 ∣ 𝜓 ∣2+

1

2
𝜉𝑅 ∣ 𝜓 ∣2. (3)

 

Equation (3) generalizes the flat–space Hamiltonian to include spacetime curvature. The additional term 𝜉𝑅 ∣

𝜓 ∣2introduces a curvature–induced potential that modifies the quantization spectrum. 

 

2.2. Klein–Gordon Equation with Minimal Coupling 

Varying the action 𝑆 = ∫ √−𝑔 ℒ 𝑑4𝑥with respect to 𝜓∗gives the covariant Klein–Gordon equation: 

[𝑔𝜇𝜈𝐷𝜇𝐷𝜈 +
𝑚2𝑐2

ℏ2
+ 𝜉𝑅]𝜓 = 0. (4) 

 

Expanding the derivative term and separating time and spatial parts yields: 

1

𝑐2
(𝑖ℏ

∂

∂𝑡
− 𝑞𝜙)2𝜓 = −ℏ2∇2𝜓 + 2𝑖ℏ

𝑞

𝑐
𝐀 ⋅ ∇𝜓 +

𝑞2

𝑐2
𝐀2𝜓 +𝑚2𝑐2𝜓 + ℏ2𝜉𝑅𝜓. (5) 

 

For static backgrounds, substituting the stationary–state ansatz 𝜓(𝐫, 𝑡) = 𝜑(𝐫)𝑒−𝑖𝐸𝑡/ℏgives: 

[−ℏ2∇2 + 2𝑖ℏ
𝑞

𝑐
𝐀 ⋅ ∇ +

𝑞2

𝑐2
𝐀2 +𝑚2𝑐2 + ℏ2𝜉𝑅]𝜑 = 𝐸2𝜑. (6) 

Equation (6) defines a curved–space energy eigenvalue problem, in which curvature 𝑅and the electromagnetic 

vector potential 𝐀jointly influence the allowed discrete energy levels. 

 

2.3. Curvature-Induced Quantization and Effective Confinement 

In the early universe or near strong gravitational fields, spacetime can be approximated locally as a compact 

domain of effective radius 𝑅eff . 

Imposing boundary conditions such as: 

𝜑(𝐫 + 2𝑅eff𝑛̂) = 𝑒𝑖𝜙𝜑(𝐫), (7) 

 

yields a quantization of spatial modes: 

𝑘𝑛 =
𝑛𝜋

𝑅eff

, 𝑛 = 1,2,3,… (8) 

 

so that the corresponding energy levels become: 

𝐸𝑛
2 = 𝑚2𝑐4 + ℏ2𝑐2𝑘𝑛

2 + ℏ2𝑐2𝜉𝑅. (9) 

 

At small scales (high curvature), the term ℏ2𝑐2𝜉𝑅shifts the ground–state energy upward, modifying the effective 

spacing between quantized levels. 

broader goal viewed as a geometric analogue of the zero–point energy correction. 

 

2.4. Gauge Holonomy and Charge Quantization 

To maintain single–valuedness of the wavefunction around any closed spacetime loop 𝛾, the total accumulated 

phase must satisfy: 

𝜓 = 𝜓 exp⁡(𝑖
𝑞

ℏ𝑐
∮𝐴𝜇𝑑𝑥

𝜇

𝛾

) → 𝜓, (10) 

which directly gives the holonomy condition: 
𝑞

ℏ𝑐
∮𝐴𝜇𝑑𝑥

𝜇

𝛾

= 2𝜋ℓ, ℓ ∈ ℤ. (11) 

 



Letters in High Energy Physics Volume 2025 

July 

 

337 

If the loop encloses a magnetic or effective curvature–induced flux  

Φ𝛾 = ∫ 𝐹𝜇𝜈𝑑Σ
𝜇𝜈

Σ
, we obtain: 

𝑞 Φ𝛾 = 2𝜋ℏ𝑐 ℓ, (12) 

and hence, 

𝑞ℓ =
2𝜋ℏ𝑐

Φ𝛾

 ℓ. (13) 

 

Equation (13) implies that charge takes on discrete values determined by integer topological indices and the total 

flux through the curved manifold. 

Positive and negative charge states correspond naturally to ℓ = ±1,±2,…, ensuring charge conjugation symmetry. 

 

2.5. Energy–Charge Coupling Relation 

Combining Eqs. (9) and (13) allows one to express the energy spectrum as a function of curvature and quantized 

charge: 

𝐸𝑛,ℓ
2 = 𝑚2𝑐4 + ℏ2𝑐2(

𝑛𝜋

𝑅eff

)2 + ℏ2𝑐2𝜉𝑅 +
𝑞ℓ
2

𝑐2
⟨𝐴2⟩. (14)

 

Equation (14) reveals a coupled quantization: spatial confinement (𝑛) and holonomy index (ℓ) simultaneously 

define both the charge and the energy levels. 

At the limit 𝑅 → 0and 𝐴𝜇 → 0, the model reduces smoothly to the standard relativistic dispersion 𝐸2 = 𝑚2𝑐4 +

𝑝2𝑐2. 

 

2.6. Geometric Interpretation 

The curvature scalar 𝑅 acts as a regulator linking geometry and charge discreteness. 

In regions where (𝑅 > 0, corresponding to a closed geometry), the allowed charges are more widely spaced; in 

nearly flat or open geometries (( 𝑅 ≈ 0− ), the spectrum becomes quasi–continuous. 

This behavior provides a natural geometric interpretation for why electric charge appears quantized under confined 

or curved conditions but continuous in idealized flat models. 

 

2.7. Limit of Flat Spacetime 

In the Minkowski limit 𝑔𝜇𝜈 → 𝜂𝜇𝜈and 𝑅 → 0, the additional curvature and holonomy terms vanish: 

lim⁡
𝑅→0

𝑞ℓ = constant = 𝑒, lim⁡
𝑅→0

𝐸𝑛,ℓ = √𝑚2𝑐4 + ℏ2𝑐2𝑘𝑛
2. (15) 

 

Thus, the formalism remains consistent with standard quantum electrodynamics (QED) while generalizing it to 

curved backgrounds. 

 

Summary of Section 

This framework shows that charge quantization can be derived from the combined effects of boundary 

confinement, curvature–dependent Hamiltonian dynamics, and gauge holonomy. 

The key insight is that charge is not an externally imposed constant but a discrete geometric quantity defined by 

integer indices (𝑛, ℓ)and curvature 𝑅 . Curvature acts as a “natural quantizer,” transforming continuous field 

degrees of freedom into discrete charge states consistent with the observed particle spectrum. 

 

3. Discussion 

The results derived from the curved-space Hamiltonian formulation demonstrate that electric charge quantization 

can emerge directly from geometric and topological constraints rather than from arbitrary assumptions. Equations 

(11)-(14) reveal that the combined effects of curvature 𝑅, spatial confinement 𝑅eff, and electromagnetic holonomy 

Φ𝛾produce discrete spectra of admissible charges. 

This interpretation aligns with the long-standing idea that the fundamental constants of nature may reflect 

boundary conditions imposed by the universe’s geometry, rather than arbitrary parameters introduced by hand.  
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3.1. Geometric Mechanism of Charge Discreteness 

The holonomy constraint in Eq. (12) establishes a quantization rule for the gauge phase accumulated along closed 

loops in curved spacetime. In a simply connected flat manifold, this phase can be continuously deformed to zero; 

however, in a curved or topologically non-trivial manifold, the loop integral retains a finite invariant, resulting in 

quantized flux. 

The proportionality 𝑞ℓ = 2𝜋ℏ𝑐 ℓ/Φ𝛾shows that the discreteness of charge arises from the topology of field lines 

embedded in a curved manifold. Thus, charge is an emergent property of the field geometry itself-a quantized 

response to spacetime curvature. 

This view complements earlier topological models such as Dirac’s monopole and Chern–Simons theories, but 

differs in that the quantization is obtained from the Hamiltonian boundary conditions rather than from imposed 

singularities. 

The curvature term 𝜉𝑅plays the role of a continuous regulator that links the scale of quantization to the local 

geometry. 

3.2. Symmetry Between Positive and Negative Charges 

The model naturally reproduces charge conjugation symmetry. 

For each allowed value +ℓ, there exists a corresponding state −ℓproducing opposite charge signs.This duality 

ensures charge conservation at the vacuum level without invoking separate particle species or external 

conservation laws. It offers a geometric picture for the coexistence of electrons and positrons as symmetric modes 

of the same underlying field. 

In this sense, matter–antimatter balance can be viewed as a manifestation of the inherent parity of the spacetime 

manifold rather than a result of particle–level interactions. 

3.3. Curvature as an Energy Regulator 

Equation (14) implies that curvature contributes a stabilizing correction to the relativistic energy spectrum. At 

ultra-relativistic limits, the kinetic term ℏ2𝑐2𝑘𝑛
2dominates and would diverge for arbitrarily high 𝑛, but the positive 

curvature term ℏ2𝑐2𝜉𝑅introduces a geometric cutoff. Physically, this mechanism can prevent unbounded energy 

growth, providing a natural explanation for the observed saturation of cosmic-ray spectra and the finite evaporation 

rate of black holes. 

The curvature term, therefore serves as a geometric regulator linking local geometry to energy quantization. 

3.4. Cosmological and Astrophysical Implications 

In the early universe, the effective curvature radius was small, 𝑅eff ∼ 10−3 m, and the scalar curvature 𝑅large. 

Under such conditions, Eqs. (9)–(14) predict that the elementary (Δ𝑞 = 𝑞ℓ+1 − 𝑞ℓ) would have been significantly 

larger than today, implying that charge quantization was larger in magnitude during the Planck epoch. As the 

universe expanded and curvature diminished, Φ𝛾increased, driving Δ𝑞 → 𝑒— the present elementary charge. 

This evolution hints at a cosmological stabilization of charge quantization as curvature relaxed, a scenario 

compatible with grand-unified cosmologies [44–46]. 

In compact astrophysical objects such as magnetars or near the event horizons of black holes, local curvature and 

magnetic flux densities are high enough that slight deviations in charge density might arise from Eq. (13). Although 

such differences would be extremely small  

(< 10−22𝑒), they could, in principle, influence pair-production rates or contribute to asymmetries in jet emission 

observed in active galactic nuclei. 

3.5. Analogous Condensed-Matter and Photonic Systems 

Curved-space analogs can be realized in laboratory platforms where effective curvature and gauge fields are 

engineered. For instance, in graphene sheets under strain or in topological photonic lattices, the metric tensor 

becomes position-dependent, and artificial vector potentials can reproduce the covariant derivative of Eq. (4). 

Charge-like quantization effects have been observed in such systems through discrete conductance plateaus and 

quantized phase vortices, lending indirect support to the geometric mechanism proposed here. Similarly, optical 

micro-resonators with spatially varying refractive indices can simulate the confinement and holonomy conditions 

responsible for discrete spectral lines in this theory. 

3.6. Relation to Gauge Invariance and Conservation Laws 

Within this model, gauge invariance remains exact: the Hamiltonian in Eq. (3) is covariant under the local 

transformation 
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𝜓 → 𝑒𝑖Λ(𝑥)𝜓, 𝐴𝜇 → 𝐴𝜇 −
ℏ𝑐

𝑞
  ∂𝜇Λ. (16) 

However, when the spacetime manifold has non-trivial topology, Λ(𝑥)may not be globally single-valued, leading 

to a quantization condition for 𝑞 to preserve single-valued physical observables. 

This geometric interpretation unifies charge conservation with the structure of spacetime: the conserved current 

𝐽𝜇 =
𝑖ℏ

2𝑚
[𝜓∗𝐷𝜇𝜓 − (𝐷𝜇𝜓)∗𝜓]automatically satisfies ∇𝜇𝐽

𝜇 = 0as a consequence of the metric connection. Thus, 

conservation arises not from an imposed symmetry but from the differential geometry of the manifold itself. 

3.7. Experimental and Numerical Viewpoints  

It is not yet possible to directly measure charge quantization caused by curvature, but it is possible to test it 

indirectly. High-precision spectroscopy in strong-gravity environments, as those near magnetars, may uncover 

minute aberrations in spectral line splitting that correlate to curvature-dependent charge shifts. Also, numerical 

simulations that combine general relativity with quantum electrodynamics may reveal whether discrete charge 

states emerge when the curvature and flux are very high.  

Curved graphene, photonic micro-cavities, and cold-atom lattices are examples of artificial analogs that create 

programmable environments where boundary-driven quantization can be seen directly.  

3.8. Conceptual Consequences  

Understanding charge as an emergent geometric characteristic alters the concept of "elementary."  

Mass, spin, and charge, which have historically been seen as basic properties, may instead be signs of field 

topology and curvature. In this perspective, electromagnetism is not a distinct interaction but a low-energy 

manifestation of spacetime geometry. The model thus aids the extensive pursuit of a geometric unification of 

forces, reflecting Einstein's initial vision while being rooted in contemporary quantum formalism.  

Summary of the Section  

The natural emergence of charge quantization is a consequence of the interplay between geometry, topology, and 

gauge symmetry restrictions. Curvature determines permissible energy scales, boundary conditions govern spatial 

quantization, and holonomy guarantees phase discreteness. When you put them together, they make a self-

consistent picture in which electric charge is a geometric resonance built into the structure of spacetime.  

 

4. Conclusion  

This paper has developed a geometric framework for charge quantization utilizing a curved-space Hamiltonian 

with electromagnetic coupling. We showed that discrete charge values come from the boundary and topological 

restrictions of spacetime by expanding the covariant Klein–Gordon equation to include curvature and holonomy 

effects.  

The resulting quantization law, articulated via integer holonomy indices and curvature-dependent flux, obviates 

the necessity for arbitrary postulates on the discreteness of charge.  

The study shows that curvature works as both a quantizer and a regulator. It keeps the field spectrum in discrete 

modes and keeps relativistic particles from diverging at high energy limits.  

Opposite charge signs arise symmetrically from a common geometric origin, hence maintaining vacuum neutrality 

and total charge conservation. This duality implies that matter-antimatter complementarity is an inherent 

characteristic of spacetime topology rather than a natural manifestation of particles. The framework is still in line 

with quantum electrodynamics in the flat-space limit, and it links well with established quantization constraints 

like the Dirac monopole relation.  

Its broader implication is that quantization—be it of energy, charge, or space—mirrors the discrete structure of 

spacetime itself. If corroborated by subsequent observations or analogous experiments, this methodology may 

facilitate the unification of electromagnetic and gravitational phenomena within a cohesive geometric framework. 
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