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Abstract 

The rapid evolution of Industry 4.0 has propelled smart manufacturing into an era of AI-driven intelligence, 

requiring seamless integration of cybersecurity, data analytics, and real-time control within wireless architectures. 

This study proposes a comprehensive framework that integrates artificial intelligence, intelligent database 

indexing, industrial cybersecurity, and real-time IIoT analytics for secure and scalable smart manufacturing 

systems. An experimental simulation was conducted using AI models including LSTM, Random Forest, and 

autoencoders to optimize predictive maintenance and anomaly detection. Indexing strategies, B-Tree, Hash, and 

AI-adaptive were evaluated for query latency and data throughput, while wireless protocols such as Zigbee, Wi-

Fi 6, and private 5G were assessed for latency, packet loss, and encryption overhead. Results indicate that AI-

adaptive indexing achieved the lowest query latency (10 ms) and highest throughput (3,200 QPS), while LSTM 

delivered superior predictive accuracy (F1 score 95.1%) and autoencoders demonstrated robust anomaly detection 

(97.5% accuracy, 2.3% false-positive rate). Private 5G emerged as the most reliable wireless medium with 

minimal latency (7 ms) and the highest data integrity. The integrated approach demonstrates strong statistical 

significance and operational viability, highlighting the potential of AI-driven solutions in enhancing resilience, 

efficiency, and security in next-generation smart manufacturing ecosystems. 
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Introduction 

Background and motivation 

The rapid advancement of Industry 4.0 technologies 

has revolutionized manufacturing systems by 

embedding artificial intelligence (AI), Industrial 

Internet of Things (IIoT), and automation into every 

layer of industrial infrastructure (Trakadas et al., 

2020). Modern smart factories are increasingly 

adopting wireless architectures and decentralized 

control systems to enhance agility, adaptability, and 

real-time decision-making. However, with increased 

digitalization comes a heightened vulnerability to 

cyber threats, data congestion, and inefficiencies in 

data retrieval (Jeyalakshmi et al., 2024). In this 

context, the integration of AI with secure wireless 

communication, efficient database indexing, and 

real-time IIoT analytics emerges as a transformative 

approach to enabling secure and scalable smart 

manufacturing ecosystems (Menon et al., 2025). 

The role of AI in smart manufacturing 

AI plays a central role in orchestrating intelligent 

operations across manufacturing processes—from 

predictive maintenance and quality inspection to 

supply chain optimization and adaptive production 

scheduling (Yadav et al., 2024). By leveraging 

machine learning algorithms, deep learning models, 

and real-time sensor fusion, AI systems can process 

vast volumes of heterogeneous data generated by 

IIoT devices. These insights facilitate autonomous 

decision-making, reduce operational downtime, and 

enhance product quality (Halder et al., 2025). 

Importantly, AI can be harnessed not only to 

optimize workflows but also to detect anomalies, 

perform behavioral analysis, and ensure the integrity 

of system operations. 

Significance of industrial cybersecurity 

The proliferation of connected devices within smart 

factories, while improving interconnectivity, also 
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creates multiple entry points for potential cyber 

intrusions. Threats such as data breaches, 

ransomware attacks, and malicious firmware pose 

serious risks to operational continuity and safety 

(Jagatheesaperumal et al., 2021). Therefore, a robust 

cybersecurity framework tailored for industrial 

environments is essential. This includes 

implementing AI-powered threat detection systems, 

secure authentication protocols, and intrusion 

prevention mechanisms that can operate 

autonomously within low-latency wireless networks 

(Zhukabayeva et al., 2025). Furthermore, the 

adoption of secure database indexing techniques 

ensures that sensitive manufacturing data remains 

protected while enabling rapid query execution and 

efficient data management (Rakholia et al., 2024). 

Database indexing and real-time analytics 

Efficient database indexing underpins real-time 

analytics in IIoT environments by enabling rapid 

access to structured and semi-structured data across 

distributed manufacturing units. In wireless 

automation architectures, latency and bandwidth 

constraints necessitate data retrieval mechanisms 

that are both lightweight and responsive (Sari et al., 

2020). AI-augmented indexing strategies can 

dynamically reorganize data structures based on 

usage patterns, relevance, and temporal demands. 

This ensures that actionable insights can be 

extracted and delivered in real-time, allowing for 

immediate response to process deviations, safety 

alerts, and maintenance needs (Annapareddy et al., 

2022). 

Wireless automation architectures 

The shift from wired to wireless automation has 

unlocked new possibilities for scalable and flexible 

manufacturing. Wireless protocols such as Wi-Fi 6, 

Zigbee, and 5G empower smart sensors and 

actuators to operate with high reliability and low 

latency, even in harsh industrial environments 

(Kumar & Agrawal, 2023). However, maintaining 

the security, integrity, and performance of these 

systems requires harmonized integration of AI, 

cybersecurity, and data management. Wireless 

architectures must support encrypted 

communications, secure edge-to-cloud data 

transfers, and adaptive network configurations. The 

convergence of these technologies ensures that 

smart manufacturing systems can scale without 

compromising efficiency or safety (Kommaragiri et 

al., 2022). 

Research scope and objectives 

This research aims to design and evaluate a 

comprehensive framework that integrates AI-driven 

decision-making, secure database indexing, and 

real-time IIoT analytics within wireless automation 

architectures. It investigates how AI can enhance 

data security and performance in wireless smart 

factories and how database optimization techniques 

can facilitate rapid, secure access to operational 

data. The study also explores the synergy between 

industrial cybersecurity protocols and AI to create 

resilient systems that can autonomously detect and 

respond to cyber threats, ultimately contributing to 

the next generation of secure, intelligent 

manufacturing platforms. 

Methodology 

Framework Design for AI-driven secure smart 

manufacturing 

The methodological foundation of this study is built 

on a modular framework that integrates AI 

algorithms, secure wireless communication 

protocols, advanced database indexing, and real-

time IIoT analytics within a smart manufacturing 

environment. The experimental setup simulates a 

production floor equipped with IIoT sensors, 

actuators, and edge devices that communicate 

through a wireless automation architecture. AI 

components, including machine learning models 

(Random Forest, SVM, and LSTM), are trained on 

operational datasets for predictive analytics, fault 

detection, and autonomous control. The framework 

adopts a layered architecture, wherein AI modules 

are deployed at both edge and cloud levels to 

optimize latency and resource utilization. 

Implementation of intelligent database indexing 

techniques 

To facilitate rapid data retrieval and storage 

optimization, the study implements and evaluates 

multiple database indexing strategies including B-

Tree, Hash Indexing, and AI-enhanced adaptive 

indexing. Time-series IIoT data collected from the 

manufacturing nodes is stored in a distributed SQL 

database system. Indexing performance is measured 

using key metrics such as query latency, throughput, 
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and cache hit rate. An AI-based decision layer 

dynamically selects the optimal indexing strategy 

based on real-time workload characteristics. 

Statistical techniques including ANOVA and 

Tukey's HSD test are employed to compare indexing 

methods and determine significant performance 

improvements under varying data loads. 

Integration of industrial cybersecurity protocols 

A robust industrial cybersecurity layer is integrated 

into the architecture to ensure secure 

communication and data protection. The system 

employs AI-driven anomaly detection using 

autoencoders and isolation forests to identify 

potential cyber threats in real-time. Authentication 

protocols such as multi-factor authentication (MFA) 

and role-based access control (RBAC) are 

embedded into the network layer. Penetration testing 

and vulnerability assessments are conducted to 

evaluate system resilience. The detection accuracy, 

false positive rate, and response time of 

cybersecurity mechanisms are analyzed using 

confusion matrices and ROC curves. Correlation 

and regression analyses are used to determine the 

relationship between system response times and 

anomaly detection precision. 

Real-Time IIoT analytics deployment 

The IIoT analytics module processes streaming 

sensor data using Apache Kafka and Spark 

Streaming integrated with Python-based AI 

pipelines. Data includes temperature, pressure, 

machine vibration, and energy consumption metrics. 

Feature engineering is applied using principal 

component analysis (PCA) to reduce dimensionality 

and enhance model performance. Predictive models 

are evaluated for accuracy using k-fold cross-

validation, and performance is reported through 

precision, recall, F1 score, and RMSE (Root Mean 

Square Error) metrics. The insights from this 

module support real-time alerts, quality monitoring, 

and predictive maintenance. 

Wireless automation architecture simulation 

Wireless communication protocols such as Zigbee, 

Wi-Fi 6, and private 5G are simulated using NS-3 to 

evaluate latency, bandwidth efficiency, and packet 

loss under various network conditions. Edge nodes 

simulate smart controllers that communicate sensor 

and AI inference data across a decentralized 

topology. Security protocols are benchmarked in 

terms of encryption overhead, transmission delay, 

and throughput under simulated cyberattack 

scenarios. Statistical modeling, including 

MANOVA, is used to assess the interaction effects 

of communication protocol and security layer on 

system performance metrics such as latency and 

availability. 

Data analysis and validation techniques 

All experimental results are statistically validated 

using SPSS and Python-based data analytics 

libraries. Descriptive statistics provide central 

tendency and variability measures. Inferential 

statistics such as t-tests, ANOVA, and chi-square 

tests are applied to compare group performance 

across experimental settings. Pearson correlation is 

used to determine relationships between AI model 

accuracy, indexing efficiency, and system security. 

Visualization of the results is done using matplotlib 

and seaborn to generate comparative plots, 

heatmaps, and time series graphs to illustrate the 

efficiency and resilience of the proposed AI-driven 

secure smart manufacturing framework. 

Results 

Table 1 summarizes the comparative efficiency of 

three indexing strategies after deploying them on the 

time-series IIoT data store. AI-adaptive indexing 

reduced mean query latency to 10 ms and sustained 

the highest throughput (3 200 QPS), while 

simultaneously improving cache hit rate and 

lowering CPU utilization. ANOVA revealed a 

statistically significant difference among the 

strategies (p = 0.002), confirming the superiority of 

the AI-adaptive method over conventional B-Tree 

and Hash indexing approaches. 

Table 1: Database indexing performance 

Indexing-Layer 

Metrics 

Query Latency 

(ms) 

Throughput 

(QPS) 

Cache Hit Rate 

(%) 

CPU Utilization 

(%) 

ANOVA p-

value 

B-Tree 25 2 400 78 65 0.002 

Hash 18 2 600 82 70 — 
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AI-Adaptive 10 3 200 91 60 — 

 

The predictive-analytics pipeline (Table 2) shows 

that the LSTM network achieved the highest F1 

score (95.1 %) and the lowest RMSE (0.098), 

outperforming Random Forest and SVM. K-fold 

cross-validation confirmed these differences were 

significant at α = 0.05, emphasizing the benefit of 

sequence-aware modelling for machine-condition 

data. 

Table 2: Predictive-maintenance model accuracy 

AI Model 

Performance 

Precision (%) Recall (%) F1 (%) RMSE 

Random Forest 93.4 92.1 92.7 0.115 

SVM 91.2 89.3 90.2 0.132 

LSTM 95.8 94.5 95.1 0.098 

 

Table 3 details the detection metrics for the 

industrial-cybersecurity layer. The autoencoder 

delivered the highest accuracy (97.5 %) with an 

exceptionally low false-positive rate (2.3 %). Figure 

2 illustrates the full ROC profile, highlighting the 

wider operating margin of the deep-learning 

approach compared with Isolation Forests and 

classical statistical thresholds. 

Table 3: Anomaly-detection effectiveness 

Cybersecurity 

Metrics 

Detection Accuracy 

(%) 

False-Positive Rate 

(%) 

Detection Latency 

(ms) 

AUC 

Autoencoder 97.5 2.3 12 0.985 

Isolation Forest 94.2 3.7 15 0.961 

Statistical 

Threshold 

86.4 8.9 8 0.812 

 

Table 4 contrasts Zigbee, Wi-Fi 6, and private 5G 

when fully encrypted and subjected to simulated 

denial-of-service bursts. Private 5G yielded sub-10 

ms latency and the best availability (99.2 %), while 

Zigbee’s higher packet-loss and encryption 

overhead limited real-time reliability. 

Table 4: Wireless protocol performance under security load  

Wireless-

Network 

Outcomes 

Avg Latency 

(ms) 

Packet Loss (%) Encryption 

Overhead (%) 

Availability 

(%) 

Throughput 

(Mbps) 

Zigbee 28 1.8 4.5 96.1 0.25 

Wi-Fi 6 12 0.9 3.2 98.3 450 

Private 5G 7 0.5 2.8 99.2 950 

 

Figure 1 plots query latency versus workload 

intensity for each indexing strategy; the AI-adaptive 

curve stays well below its peers across light-to-

heavy loads, validating the results in Table 1. Figure 

2 displays ROC curves for the three cybersecurity 

algorithms; the autoencoder encloses the largest area 

under the curve, mirroring the accuracy gains 

reported in Table 3. 

Collectively, these results demonstrate that the 

proposed AI-driven secure smart-manufacturing 

architecture excels in data-access speed, predictive 

precision, threat-detection robustness, and wireless 

reliability while maintaining acceptable 

computational overheads, thus fulfilling the core 

objectives of the study 
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Figure 1: Query latency across workloads for indexing strategies 

 

Figure 2: ROC curves for anomaly-detection algorithms 

Discussion 

AI-driven enhancements in database indexing 

The results clearly demonstrate that AI-adaptive 

indexing significantly improves query performance, 

throughput, and system efficiency in smart 

manufacturing databases. As shown in Table 1 and 

Figure 1, AI-enhanced indexing strategies 

dynamically adjust to workload fluctuations, 

offering a query latency as low as 10 ms under high 

loads, outperforming traditional B-Tree and Hash 

indexing approaches. This capability is crucial in 

smart manufacturing environments where high-

frequency sensor data must be accessed and 

analyzed in real-time ((Dutta et al., 2024)). By 

leveraging pattern-based learning, AI indexing 
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anticipates user queries and data access behaviors, 

which results in superior cache utilization and lower 

CPU overhead. The statistical significance verified 

through ANOVA underscores the robustness of this 

approach. These findings support the growing 

consensus that AI-enabled database systems are 

essential for sustaining real-time analytics in IIoT-

driven environments (Mahmood et al., 2021). 

Superior performance of predictive AI models 

for equipment monitoring 

The high precision and recall achieved by the LSTM 

model in Table 2 confirm that deep learning, 

particularly sequence-aware architectures, are well-

suited for predictive maintenance in manufacturing 

contexts. LSTM's ability to retain long-term 

dependencies allows it to capture subtle patterns in 

time-series sensor data, yielding an F1 score of 

95.1% and the lowest RMSE (0.098). In contrast, 

classical models like SVM and Random Forest, 

while relatively effective, showed reduced 

performance due to their limited capacity to model 

temporal relationships (Oun et al., 2025). These 

findings affirm the value of deploying LSTM 

models at the edge or in hybrid cloud-edge systems 

to anticipate equipment failures, reduce downtime, 

and ensure continuous production flow. The use of 

k-fold cross-validation further reinforces the 

model's generalizability and reliability across varied 

operational scenarios (Yang et al., 2019). 

Advancements in AI-powered industrial 

cybersecurity 

Cybersecurity remains a foundational pillar for 

smart manufacturing, and the results in Table 3 and 

Figure 2 demonstrate that AI-driven threat detection, 

particularly using autoencoders, offers a highly 

effective defense mechanism. The autoencoder 

model not only achieved the highest detection 

accuracy (97.5%) but also maintained a low false-

positive rate (2.3%) and competitive latency (12 

ms). This performance, visualized in the superior 

ROC curve (Figure 2), indicates its ability to 

distinguish between normal and anomalous 

behaviors with minimal disruption to system 

operations (Jamil et al., 2024). The ability to identify 

and respond to threats in real-time is essential in 

wireless manufacturing environments, where 

security breaches can lead to production halts, safety 

issues, or data leaks. The deployment of 

autoencoders thus adds a robust layer of security to 

the system, capable of adapting to new threats 

without the need for constant human intervention 

(Xu et al., 2023). 

Impact of secure wireless protocols on 

manufacturing agility 

The comparison of wireless communication 

protocols in Table 4 reveals that private 5G 

networks are best suited for secure smart 

manufacturing due to their low latency, high 

throughput, and high availability under encrypted 

conditions. With an average latency of just 7 ms and 

throughput of 950 Mbps, private 5G significantly 

outperforms both Zigbee and Wi-Fi 6 in critical 

metrics. This makes it particularly valuable in 

applications requiring real-time control and 

feedback loops. Additionally, the minimal 

encryption overhead and negligible packet loss 

highlight the protocol's suitability for transmitting 

both operational data and security-sensitive 

information (Radlbauer et al., 2025). These results 

align with recent industry shifts toward private 

cellular networks for industrial automation, offering 

scalable, secure, and low-latency connectivity 

across decentralized manufacturing floors (Sah et 

al., 2025). 

Synergistic integration for smart manufacturing 

resilience 

The collective integration of AI-driven analytics, 

secure database indexing, industrial cybersecurity, 

and wireless automation creates a resilient and 

adaptive smart manufacturing ecosystem. Each 

layer not only functions independently with high 

efficiency but also synergistically reinforces the 

others (Humayun et al., 2024). For instance, faster 

data indexing accelerates anomaly detection, while 

secure wireless networks ensure that AI predictions 

and alerts are transmitted without interruption. The 

multi-layered statistical validation further supports 

the dependability of these results and affirms the 

feasibility of implementing this architecture in real-

world industrial settings (Dieguez et al., 2025). 

The findings validate the research hypothesis that 

integrating AI, cybersecurity, and efficient data 

systems into a wireless smart manufacturing 

architecture can significantly enhance operational 

efficiency, system security, and real-time 
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responsiveness, ultimately paving the way for next-

generation Industry 4.0 deployments. 

Conclusion 

This study presents a comprehensive AI-driven 

framework for secure smart manufacturing by 

integrating database indexing, industrial 

cybersecurity, and real-time IIoT analytics within 

wireless automation architectures. The results affirm 

that AI-adaptive indexing significantly enhances 

data access speed and system efficiency, while 

LSTM-based predictive models outperform 

traditional algorithms in monitoring equipment 

health. Furthermore, AI-powered anomaly 

detection, particularly through autoencoders, 

provides robust cybersecurity with high accuracy 

and minimal latency. Wireless protocols such as 

private 5G demonstrate superior performance in 

secure industrial communication, enabling reliable 

data transmission in latency-sensitive environments. 

Collectively, the synergistic integration of these 

technologies not only ensures real-time 

responsiveness and operational continuity but also 

fortifies the manufacturing infrastructure against 

evolving cyber threats. This research lays a strong 

foundation for scalable, secure, and intelligent 

manufacturing systems, guiding the next phase of 

Industry 4.0 transformation. 
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