
Letters in High Energy Physics
ISSN: 2632-2714

Volume 2025
May

222

Engineering Secure Software: Information Security Strategies for

Modern Development Teams

Rajiv Kishore Gadda1, Ajai Batish Paul2, Sri Nitchith Akula3

1 Lead Software Engineer at DocuSign

2 Sr. Director of Enterprise Security at Affirm

3 Software Engineer

Abstract

In an era where software systems form the backbone of digital transformation, securing applications from the

ground up has become a strategic imperative. This study explores the engineering of secure software through the

integration of comprehensive information security strategies by modern development teams. Utilizing a mixed-

methods approach, the research involved quantitative surveys and qualitative interviews with 120 professionals

across industries practicing Agile, DevOps, and hybrid development methodologies. Key strategies such as

secure coding, threat modeling, DevSecOps pipeline integration, and automated testing (SAST, DAST, and

SCA) were assessed for their implementation frequency, effectiveness, and integration complexity. Statistical

analysis revealed strong positive correlations between the adoption of security practices and software

robustness, alongside significant inverse relationships with security incident rates and time-to-market pressures.

Regression modeling confirmed the Security Practice Index, team collaboration, and training frequency as

significant predictors of software quality. Additionally, DevOps-based teams and larger organizations reported

significantly lower incident rates, as evidenced by ANOVA results and comparative visualizations. The study

concludes that engineering secure software requires not just technical tools but a cultural shift that aligns

developers, security analysts, and operations teams around shared security goals. By embedding security into

every phase of the SDLC, modern teams can mitigate risks, improve resilience, and sustain agile delivery in an

increasingly hostile cyber landscape.

Keywords: Secure software development, DevSecOps, SDLC, application security, software robustness, team

collaboration, threat mitigation, information security strategies.

Introduction

Contextualizing the need for secure software

development

In today’s digitally driven world, software systems

underpin nearly every facet of our daily life, from

communication and healthcare to finance and

governance (Mouratidis et al., 2005). As reliance

on digital infrastructure grows, so does the attack

surface for cyber threats. Modern development

teams face an urgent imperative to embed security

into every stage of the software development

lifecycle (SDLC) (Ross et al., 2016). The shift from

reactive security fixes to proactive secure

engineering has become a foundational principle in

delivering trustworthy and resilient applications.

Yet, many development teams continue to treat

security as an afterthought rather than an integral

design component, leaving critical systems

vulnerable to breaches, data loss, and business

disruption (Khan et al., 2024).

The evolving threat landscape and its

implications

The frequency and sophistication of cyberattacks

have evolved, targeting not just end-user

vulnerabilities but exploiting weaknesses in the

application layer and development environments

(Janisar et al., 2024). Common threats such as code

injection, broken authentication, insecure APIs, and

dependency-based vulnerabilities necessitate that

developers adopt holistic security strategies that

span beyond traditional testing phases. The shift

towards continuous integration and deployment

(CI/CD), agile methodologies, and cloud-native

development has further complicated the security

paradigm, demanding real-time, automated, and

intelligent security interventions (Ross et al., 2019).

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2025
May

223

Bridging development agility and security

discipline

Modern development practices prioritize speed,

adaptability, and iterative releases (Humayun et al.,

2023). However, rapid development cycles often

increase the risk of introducing security flaws. This

research argues for a cultural and technical

alignment between agile development

methodologies and robust information security

practices (Mihelič et al., 2023). The concept of

"DevSecOps" integrating development, security,

and operations embodies this shift by embedding

security checks into each phase of the development

workflow. When security is integrated from the

initial planning stages through to deployment and

monitoring, teams are better equipped to identify

vulnerabilities early, reduce technical debt, and

maintain compliance with industry standards and

regulations (Pochu, S., & Kathram, 2024).

Strategies for embedding security across the

SDLC

This study focuses on engineering secure software

by applying systematic security strategies across

the SDLC. Key focus areas include secure code

review protocols, static and dynamic analysis,

threat modeling, automated security testing,

dependency management, and security training for

developers. Additionally, the adoption of secure

coding guidelines such as those outlined by

OWASP (Open Web Application Security Project)

provides a universal baseline for writing resilient

code (Boppana, 2019). Implementing secure

architectural patterns, access control mechanisms,

and encryption practices further fortifies the

software against both known and emerging threats.

The role of collaborative and automated

security practices

Security is no longer solely the domain of security

professionals. Instead, cross-functional

collaboration is crucial developers, testers,

architects, and security analysts must work together

under shared goals of secure delivery. Automation

plays a pivotal role in this paradigm shift, enabling

continuous security validation through integration

with CI/CD pipelines. This research explores how

modern tools such as SAST (Static Application

Security Testing), DAST (Dynamic Application

Security Testing), software composition analysis

(SCA), and container security platforms empower

teams to scale secure practices without

compromising productivity.

Purpose and scope of the study

This research aims to investigate, evaluate, and

recommend practical information security

strategies tailored to the workflows of modern

development teams. By examining real-world case

studies, security metrics, and team dynamics, the

study identifies best practices for engineering

secure software. The ultimate goal is to bridge the

gap between development agility and security

assurance, providing a strategic roadmap for teams

striving to build secure, scalable, and resilient

applications in an increasingly hostile digital

environment.

Methodology

Research framework and design approach

To comprehensively explore how modern

development teams can engineer secure software

through effective information security strategies,

this study adopted a mixed-methods research

design. Both qualitative and quantitative

approaches were used to evaluate security

integration within software development lifecycles

(SDLC). The qualitative component involved semi-

structured interviews with software developers,

DevOps engineers, and security analysts from

diverse industry sectors including fintech,

healthcare, and SaaS-based enterprises. This was

supplemented by a quantitative survey designed to

statistically analyze the implementation level and

effectiveness of specific information security

strategies across modern development teams.

Sample selection and data collection

The target sample included 120 professionals

actively involved in secure software development,

drawn from organizations practicing agile,

DevOps, or hybrid development models. Stratified

random sampling was used to ensure diversity

across company sizes (startups, SMEs, and large

enterprises) and domains. Data was collected over a

three-month period using a two-tiered approach: (i)

online surveys administered through secure forms

with structured Likert-scale and open-ended

questions, and (ii) in-depth virtual interviews to

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2025
May

224

gather nuanced insights on the challenges and best

practices related to secure software engineering.

Assessment of information security strategies

The core of the methodology was to evaluate key

information security strategies deployed by modern

development teams. These included secure coding

practices, implementation of Static Application

Security Testing (SAST) and Dynamic Application

Security Testing (DAST), use of threat modeling,

adoption of DevSecOps pipelines, and compliance

with security frameworks such as OWASP Top 10

and ISO/IEC 27001. Each strategy was rated by

respondents on a scale of 1 to 5 based on

implementation frequency, perceived effectiveness,

and integration complexity. Open-source and

commercial security tool usage (e.g., SonarQube,

Checkmarx, Snyk, Fortify) was also documented to

assess technological maturity.

Evaluation of team dynamics and security

integration

To understand how team collaboration influences

security outcomes, the study evaluated

communication models, cross-functional training

practices, and integration of security champions

within development teams. Interview transcripts

were thematically coded using NVivo software,

and patterns were analyzed to identify cultural and

organizational enablers or barriers to secure

software practices. Key variables such as

development methodology (Agile vs Waterfall),

team size, and frequency of release cycles were

also considered in the analysis to uncover their

statistical correlation with successful security

integration.

Quantitative analysis and statistical techniques

Quantitative data from the survey were processed

using SPSS software. Descriptive statistics (means,

standard deviations, and frequency distributions)

were used to summarize adoption trends of security

strategies. Inferential statistics, including Pearson

correlation and multiple regression analysis, were

applied to test hypotheses regarding the

relationship between secure software practices and

perceived software robustness, frequency of

security incidents, and time-to-market efficiency.

ANOVA tests were conducted to identify

significant differences in security outcomes based

on organizational size and development

methodology.

Validation and reliability measures

To ensure the reliability and validity of the

findings, the survey instrument was pre-tested with

a pilot group of 10 professionals. Cronbach’s alpha

was calculated to measure internal consistency of

the Likert-scale items, yielding a reliability

coefficient of 0.87. Triangulation was employed by

comparing quantitative survey results with

qualitative interview insights to validate themes

and interpretations. Furthermore, inter-coder

reliability was maintained at above 85% for

qualitative data coding.

Scope and limitations

While this methodology provides a robust basis for

analyzing security strategies in modern software

development, it is limited by its cross-sectional

nature and reliance on self-reported data.

Longitudinal studies may provide deeper insights

into how security maturity evolves over time.

Nonetheless, the approach offers a comprehensive

understanding of current practices, challenges, and

statistical relationships that define the engineering

of secure software in today’s dynamic development

environments.

Results

The results of this study reveal substantial insights

into the implementation and effectiveness of

information security strategies within modern

development teams. As detailed in Table 1, secure

coding emerged as the most frequently

implemented and effective strategy, with a mean

implementation score of 4.6 (±0.5) and perceived

effectiveness of 4.5 (±0.4). It also had the highest

tool-adoption rate at 95% and a median of 12

training hours per quarter. In contrast, strategies

like threat modeling and incorporating security

champions showed lower implementation (means

of 3.3 and 3.1 respectively), indicating that cultural

and organizational barriers may hinder their

adoption despite moderate effectiveness ratings.

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2025
May

225

Table 1: Implementation, effectiveness, and complexity of information-security strategies (n = 120)

Strategy Implementation
(

Mean ± SD)

Perceived

Effectiveness
(

Mean ± SD)

Integration

Complexity
(

Mean ± SD)

Tool-

Adopti

on

Rate

(%)

Training

Hours/Quarter
(M

edian)

Secure

Coding

4.6 ± 0.5 4.5 ± 0.4 2.0 ± 0.6 95 12

SAST 4.2 ± 0.7 4.1 ± 0.6 2.8 ± 0.7 88 10

DAST 3.9 ± 0.8 3.8 ± 0.7 3.1 ± 0.9 76 8

Threat

Modelin

g

3.3 ± 1.0 3.9 ± 0.6 3.5 ± 0.8 64 6

DevSec

Ops

Pipeline

4.0 ± 0.8 4.2 ± 0.5 2.4 ± 0.7 82 9

SCA

Tools

3.7 ± 0.9 3.6 ± 0.8 3.0 ± 0.8 71 7

Security

Champio

ns

3.1 ± 1.1 3.8 ± 0.7 2.6 ± 0.9 55 5

The correlation matrix presented in Table 2

demonstrates strong positive relationships between

the Security Practice Index (SPI) and Software

Robustness Score (SRS) (r = 0.71), as well as a

strong inverse correlation with Security Incident

Rate (SIR) (r = −0.68). These results suggest that

teams with higher implementation of secure

software practices experience significantly fewer

security breaches and produce more robust

applications. The Team Collaboration Index (TCI)

also correlates positively with both SPI (r = 0.59)

and SRS (r = 0.55), emphasizing the importance of

integrated, cross-functional teams.

Table 2: Pearson correlation matrix of key variables

Security

Practice Index

(SPI)

Software

Robustness

Score (SRS)

Time-to-

Market

Efficiency

(TME)

Security

Incident Rate

(SIR)

Team

Collaboration

Index (TCI)

All coefficients

p < 0.01 (two-

tailed).

SPI 1.00 0.71 −0.45 −0.68 0.59

SRS 1.00 −0.38 −0.74 0.55

TME 1.00 0.42 −0.31

SIR 1.00 −0.52

TCI 1.00

To further quantify the impact of these practices,

Table 3 presents a multiple regression analysis

predicting Software Robustness Score. The model

was statistically significant (Adjusted R² = 0.62, p

< 0.001), with the Security Practice Index (β =

0.62, p < 0.001) emerging as the strongest

predictor. Team collaboration and training hours

per quarter also had significant positive effects,

while high release frequency had a small but

significant negative impact on robustness,

suggesting a tradeoff between speed and security if

practices are not well-integrated.

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2025
May

226

Table 3: Multiple-regression model predicting software robustness score

Predictor β SE t p

Intercept 12.40 4.10 3.02 0.003

Security Practice Index (SPI) 0.62 0.08 7.75 <0.001

Team Collaboration Index (TCI) 0.28 0.07 4.00 <0.001

Training Hours/Quarter 0.15 0.05 3.00 0.003

Release Frequency (cycles · mo⁻¹) −0.21 0.06 −3.50 0.001

Model summary: R² = 0.64, Adjusted R² = 0.62, F(4, 115) = 32.5, p < 0.001, N = 120.

The interaction between organizational size and

development methodology on security outcomes is

shown in Table 4, using a two-way ANOVA.

Significant main effects were observed for both

development methodology (F = 6.42, p = 0.002)

and organization size (F = 8.91, p < 0.001), while

their interaction was marginally significant (p =

0.082). This indicates that both factors

independently influence the rate of security

incidents, and that smaller organizations using

Agile-only frameworks may face higher risk

compared to larger enterprises employing DevOps-

based workflows.

Table 4: Two-Way ANOVA on security-incident rate by development methodology and organization size

Source df F p Partial η²

Development Methodology 2 6.42 0.002 0.102

Organization Size 2 8.91 <0.001 0.136

Methodology × Size 4 2.13 0.082 0.070

Error 113 — — —

Total 119 — — —

Figure 1 visualizes the inverse relationship between

the Security Practice Index and Time-to-Market

Efficiency. As security practices are more

extensively implemented, the speed of deployment

tends to slightly decline (R = −0.45), highlighting

the operational tension between secure coding and

rapid delivery. However, this tradeoff is moderated

when automation and collaboration practices are

effectively adopted, as indicated by the regression

model.

Figure 1. Bar diagram illustrating the relationship

between security practice index and time-to-market

Figure 2 provides boxplots comparing Security-

Incident Rates across Agile, DevOps, and Hybrid

methodologies. DevOps teams had the lowest

median incident rate at 3.1 incidents per 1,000

deployments, followed by Hybrid teams at 3.7, and

Agile-only teams at 4.2. This finding supports the

earlier statistical evidence that integrating security

into the deployment pipeline (a key DevOps tenet)

contributes to improved security performance.

0
1
2
3
4
5
6
7
8
9

10

Te
am

 1

Te
am

 2

Te
am

 3

Te
am

 4

Te
am

 5

Te
am

 6

Te
am

 7

Te
am

 8

Te
am

 9

Te
am

 1
0

Te
am

 1
1

Te
am

 1
2

Ef
fic

ie
nc

y

Team ID

Security Practice Index Time-to-Market Efficiency

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2025
May

227

Figure 2. Bar diagram of security-incident rate

(incidents · 1 000 deployments⁻¹) across

development methodologies

Discussion

Integrating security into the development

lifecycle

The findings underscore the critical role of

embedding security practices throughout the

Software Development Lifecycle (SDLC),

validating the necessity of treating security as an

engineering discipline rather than a final

checkpoint. As shown in Table 1, strategies such as

secure coding and the use of Static Application

Security Testing (SAST) tools were not only

widely adopted but also rated highest in

effectiveness (Tariq, 2025). This suggests that

development teams are increasingly aligning their

coding practices with established frameworks like

OWASP and integrating security validation at the

source-code level. By doing so, they significantly

reduce vulnerabilities early in the development

process, where remediation is most cost-effective

(Khan et al., 2022).

The role of tooling and automation

The study highlights a strong correlation between

tool adoption and security performance. Teams

using tools like SAST, DAST, and Software

Composition Analysis (SCA) reported higher

robustness scores and fewer security incidents

(Table 2). This aligns with industry trends that

prioritize automation in secure software

engineering. Automation minimizes human error

and enables continuous security assessments in

fast-paced CI/CD environments (Grigorieva et al.,

2024). However, the moderate adoption of more

complex strategies such as threat modeling and

security champions reflects the challenge of

integrating security beyond tools into the culture

and design process. These practices, though

impactful, require dedicated organizational support

and time investment, which may be lacking in agile

teams focused heavily on delivery speed (Ruefle et

al., 2014).

Team collaboration as a strategic lever

The strong positive correlations between the Team

Collaboration Index (TCI) and both Security

Practice Index (SPI) and Software Robustness

Score (SRS) indicate that collaborative cultures are

vital for secure development (Ali et al., 2021). The

regression analysis (Table 3) reinforces this by

showing TCI as a significant predictor of software

robustness. This suggests that cross-functional

alignment particularly through practices like

DevSecOps enables teams to address security

concerns earlier and more effectively (Onumah et

al., 2020). Security champions, though less

frequently adopted (Table 1), could serve as vital

liaisons between development and security teams,

ensuring consistent focus on threat mitigation

across sprints (Tøndel et al., 2022).

Balancing speed and security

An interesting insight from this study is the

tradeoff between security depth and delivery speed.

Figure 1 shows a moderate inverse relationship

between the Security Practice Index and Time-to-

Market Efficiency. While this suggests that

integrating more security practices may slow down

deployment cycles, it does not necessarily imply

inefficiency (Mohammad & Surya, 2018). Instead,

it highlights the importance of finding equilibrium

teams must optimize security processes without

compromising agility. Automation tools, shift-left

practices, and modular design can help bridge this

gap by enabling rapid but secure development

iterations (Al Hayajneh et al., 2023).

Organizational context and security outcomes

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Agile DevOps

Se
cu

rit
y-

In
ci

de
nt

 R
at

e

Development Methodology

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2025
May

228

Organizational size and development methodology

also emerged as key differentiators in security

performance (Table 4). Larger enterprises, likely

with dedicated security resources, outperformed

smaller teams in reducing incident rates. Similarly,

DevOps-oriented teams had significantly lower

security incidents compared to Agile-only teams, as

shown in Figure 2. DevOps integrates security into

deployment pipelines, allowing real-time

vulnerability checks and faster feedback loops,

which explains its superior performance (Alenezi

& Almuairfi, 2020). These findings suggest that

smaller teams and organizations relying solely on

Agile methods should invest in upskilling and

adopt security automation to close the performance

gap (Murat et al., 2024).

Strategic implications for secure software

engineering

The discussion points to a broader imperative:

secure software engineering must be systemic and

strategic. Information security should not be siloed

as a post-development task but woven into the

fabric of modern development teams. This means

investing in security literacy, automating routine

checks, and empowering developers to own

security outcomes (Tøndel et al., 2019). The high

R² value (0.64) in the regression model (Table 3)

indicates that structured practices, training, and

collaboration collectively account for a significant

portion of software robustness, offering a data-

driven case for integrated security governance

(Woodward & Young, 2007).

This study affirms that engineering secure software

is not simply a technical endeavor but an

organizational transformation. Tools and

automation provide the foundation, but culture,

collaboration, and leadership commitment drive

lasting results. By adopting a multi-dimensional

security strategy—one that balances agility with

resilience—modern development teams can

effectively counter today’s complex threat

landscape while maintaining delivery efficiency.

Conclusion

This study highlights the pivotal role of integrating

robust information security strategies into the

fabric of modern software development practices.

The results demonstrate that secure software

engineering is most effective when approached

holistically—through a combination of automated

security tooling, structured training, collaborative

team dynamics, and strategic alignment across the

SDLC. Teams that actively implement secure

coding practices, adopt DevSecOps pipelines, and

foster cross-functional collaboration not only

produce more robust software but also experience

fewer security incidents and operational setbacks.

Although a slight tradeoff exists between security

depth and time-to-market efficiency, this can be

mitigated through automation and early-stage

integration of security processes. Ultimately, the

study underscores that secure software is not the

result of isolated practices, but the outcome of a

cohesive, security-first development culture—one

that empowers teams to proactively anticipate and

defend against evolving cyber threats while

sustaining the agility required in modern digital

environments.

References

1. Al Hayajneh, A., Thakur, H. N., & Thakur, K.

(2023). The Evolution of information security

strategies: a comprehensive investigation of

infosec risk assessment in the contemporary

information era. Computer and Information

Science, 16(4), 1-1.

2. Alenezi, M., & Almuairfi, S. (2020). Essential

activities for secure software development. Int.

J. Softw. Eng. Appl, 11(2), 1-14.

3. Ali, A., Jadoon, Y. K., Qasim, M., Iqbal, M. S.,

Asma, & Nazir, M. U. (2021, April). Secure

Software Development: Infuse Cyber Security

to Mitigate Attacks in an Organization.

In International Conference on Engineering

Software for Modern Challenges (pp. 154-163).

Cham: Springer International Publishing.

4. Boppana, V. (2019). Secure Practices in

Software Development. Global Research

Review in Business and Economics

[GRRBE], 10(05).

5. Grigorieva, N. M., Petrenko, A. S., & Petrenko,

S. A. (2024, January). Development of secure

software based on the new devsecops

technology. In 2024 Conference of Young

Researchers in Electrical and Electronic

Engineering (ElCon) (pp. 158-161). IEEE.

6. Humayun, M., Niazi, M., Assiri, M., & Haoues,

M. (2023). Secure global software development:

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2025
May

229

A practitioners’ perspective. Applied

Sciences, 13(4), 2465.

7. Janisar, A., Shafee, K., Sarlan, A., Maiwada, U.,

& Salameh, A. A. (2024). Securing Software

Development: A Holistic Exploration of

Security Awareness in Software Development

Teams. International Journal of Academic

Research in Business and Social

Sciences, 14(1).

8. Khan, R. A., Akbar, M. A., Rafi, S., Almagrabi,

A. O., & Alzahrani, M. (2024). Evaluation of

requirement engineering best practices for

secure software development in GSD: an ISM

analysis. Journal of Software: Evolution and

Process, 36(5), e2594.

9. Khan, R. A., Khan, S. U., Alzahrani, M., &

Ilyas, M. (2022). Security assurance model of

software development for global software

development vendors. Ieee Access, 10, 58458-

58487.

10. Mihelič, A., Hovelja, T., & Vrhovec, S. (2023).

Identifying key activities, artifacts and roles in

agile engineering of secure software with

hierarchical clustering. Applied Sciences, 13(7),

4563.

11. Mohammad, S. M., & Surya, L. (2018).

Security automation in Information

technology. International journal of creative

research thoughts (IJCRT)–Volume, 6.

12. Mouratidis, H., Giorgini, P., & Manson, G.

(2005). When security meets software

engineering: a case of modelling secure

information systems. Information

Systems, 30(8), 609-629.

13. Murat, D., Berkan, U., & Ali, I. (2024,

October). An Overview of Secure by Design:

Enhancing Systems Security through Systems

Security Engineering and Threat Modeling.

In 2024 17th International Conference on

Information Security and Cryptology

(ISCTürkiye) (pp. 1-6). IEEE.

14. Onumah, N., Attwood, S., & Kharel, R. (2020,

July). Towards secure application development:

A cyber security centred holistic approach.

In 2020 12th International Symposium on

Communication Systems, Networks and Digital

Signal Processing (CSNDSP) (pp. 1-6). IEEE.

15. Pargaonkar, S. (2023). Advancements in

security testing: A comprehensive review of

methodologies and emerging trends in software

quality engineering. International Journal of

Science and Research (IJSR), 12(9), 61-66.

16. Pochu, S., & Kathram, S. R. (2024). Integrating

Security Requirements into Software

Development: A Comprehensive Approach to

Secure Software Design. Journal for

Multidisciplinary Research, 1(03), 60-76.

17. Ross, R., McEvilley, M., & Oren, J.

(2016). Systems security engineering:

Considerations for a multidisciplinary

approach in the engineering of trustworthy

secure systems (No. NIST Special Publication

(SP) 800-160 (Withdrawn)). National Institute

of Standards and Technology.

18. Ross, R., Pillitteri, V., Graubart, R., Bodeau, D.,

& McQuaid, R. (2019). Developing cyber

resilient systems: a systems security engineering

approach (No. NIST Special Publication (SP)

800-160 Vol. 2 (Draft)). National Institute of

Standards and Technology.

19. Ruefle, R., Dorofee, A., Mundie, D.,

Householder, A. D., Murray, M., & Perl, S. J.

(2014). Computer security incident response

team development and evolution. IEEE Security

& Privacy, 12(5), 16-26.

20. Tariq, M. U. (2025). Enhancing Cyber

Resilience in Software Development:

Integrating Secure Coding Practices and

Cybersecurity Frameworks. In Navigating

Cyber Threats and Cybersecurity in the

Software Industry (pp. 35-64). IGI Global

Scientific Publishing.

21. Tøndel, I. A., Cruzes, D. S., Jaatun, M. G., &

Sindre, G. (2022). Influencing the security

prioritisation of an agile software development

project. Computers & Security, 118, 102744.

22. Tøndel, I. A., Jaatun, M. G., Cruzes, D. S., &

Williams, L. (2019). Collaborative security risk

estimation in agile software

development. Information & Computer

Security, 27(4), 508-535.

23. Woodward, B. S., & Young, T. (2007).

Redesigning an information system security

curriculum through application of traditional

pedagogy and modern business

trends. Information Systems Education

Journal, 5(11), 1-11.

