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Abstract  

Computational modeling is now a cornerstone of quantum materials research, where the density functional theory 

(DFT) provides a key tool at the heart of predicting electronic structure and material properties. We evaluate 

DFT methods, with a focus on exchange-correlation functional; computational efficiency enhancements; and the 

incorporation of machine learning (ML). The study leverages first-principles calculations for the analysis of band 

structures, DOS, and functional-dependent electronic properties variations for quantum materials (2D materials, 

(Graphene, MoS₂, TMDs), superconductors, topological insulators. Additionally, time-dependent DFT (TDDFT) 

and orbital-free DFT (OF-DFT) increase accuracy for large-scale simulations, which are limited by 

computational resources in complex materials. In fact, these new ML-assisted DFT techniques greatly improve 

the computational speed and predictive accuracy, thereby minimizing the conflicting options between 

computational cost and precision. The study further presents critical perspectives on defect engineering in the 

context of semiconductors, asserting its importance in tuning electronic properties for emerging fields such as 

Nano electronics and quantum computing applications. Standard DFT functional come with accuracy limitations, 

but by combining them with AI-based surrogate models and many-body physics such as DFT+DMFT, GW, and 

Quantum Monte Carlo methods, there are powerful options on both fronts. Such innovations are unlocked by 

more efficient, scalable, and precise quantum material simulations, facilitating advances in next-generation 

devices based on optoelectronics, spintronic, and superconductivity. This work highlights the potential of AI-

assisted computational modeling to revolutionize quantum materials science and ultimately enable advances in 

energy-efficient electronics and quantum technologies. 

Keywords: Density Functional Theory, Quantum Materials, Electronic Structure, Machine Learning, 2D 

Materials, Superconductors, Topological Insulators, Defect Engineering, Time-Dependent DFT, Orbital-Free 

DFT, Computational Efficiency, Exchange-Correlation Functional, AI-Driven Modeling, Many-Body Physics, 

Quantum Computing. 

 

1.  Introduction 

Density Functional Theory has become one of the 

staples in computational materials science because it 

provides a balance between accuracy and efficiency 

in describing the electronic structure of many 

quantum materials[1][2]. Rooted in quantum 

mechanics, DFT allows researchers to explore the 

essential characteristics of materials at an atomic 

and electronic level, and has become a crucial tool 

in both material science and condensed matter 

physics. Quantum materials, in which electrons have 

strong correlation effects, often require methods and 

techniques which can take into account more 

intricate electron-electron interactions due to the 

overwhelming complexity of the materials involved 

[3]. 

 

Figure.1 The schematic of typical workflow to 

advancing computational modeling in Quantum 

Materials.  
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DFT has been refined over the years for accuracy 

and computational efficiency. These developments 

have enabled the investigation of materials with 

novel properties such as topological insulators, 

superconductors, and two-dimensional materials 

exhibiting exotic electronic phenomena. The high-

throughput predictive power of DFT has also speed 

up materials discovery, facilitating the design and 

development of innovative technologies like 

quantum computing, spintronic, and next-

generation photovoltaics. Nevertheless, the 

fundamental inadequacies of conventional DFT 

functional, especially in capturing electron 

correlation effects in systems with strong electron-

electron interactions, have led to efforts to combine 

DFT with machine learning Fig. 2, many-body 

perturbation theory, and time-dependent techniques 

to increase its applicability and fidelity for modeling 

materials[4]. 

 

 

Fig.2 General Strategy for quantum simulations of 

materials using quantum embedding. 

This approach has many promising extensions 

among them the incorporation of machine learning 

(ML) techniques in DFT based simulations as shown 

in fig. 3 which aim at optimizing the computational 

cost while keeping the predictive capacity as high as 

possible [2, 5].  

 
Figure.3 Machine learning techniques in DFT 

simulations 

Conventional DFT computations are demanding in 

terms of computing resources, particularly for large-

scale systems or materials with rich electronic 

structures. Recently published research has shown 

that ML algorithms can drastically cut down the 

computational load by predicting electronic 

properties to near-DFT accuracy at a much lower 

cost [6]. For instance, [7], a deep neural network 

model to accelerate finite-temperature Kohn-Sham 

DFT calculations had been developed and shown to 

be accurate to chemical accuracy while using several 

orders of magnitude less computational time as 

shown in Fig. 4 [8].  

This notes the common demand of high-order 

counterparts that are essential in screened on large 

datasets during material high-throughput screening 

to swiftly pull out promising competing devices in 

fro-technology. Moreover, the success of ML-

enhanced DFT has recently facilitated prediction of 

band structures, optical properties, and phonon 

dispersion in emergent quantum materials, allowing 

for material exploration beyond computational 

barriers. These breakthroughs emphasize the 

promise of ML-based computational modeling to 

transform material discovery and characterization 

[9]. 

 

Figure. 4 Shows the comparison of Time for 2D 

Materials through Kohn-Sham DFT Calculation.  

In addition to massive efficiency gains, method 

advances in time-dependent DFT (TDDFT) have 

dramatically widened the ability to explore large 

classes of materials in computational materials 

research, especially for excitonic properties and 
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electron dynamics showed in [10]. Overall, TDDFT 

offers a versatile framework to explore optical 

excitations, charge transport and light-matter 

interactions in complex materials systems, making it 

a pivotal theory for fields such as photovoltaics, 

optoelectronics and quantum information science 

[11]. A recent study by Zunger  (2021) devised a 

computational tool, called WEST-TDDFT, to 

simplify the computation of the processes of light 

absorption and emission in point-defect containing 

materials [7]. It has been used successfully for 

estimating defect states in semiconductors, 

including diamond and silicon carbide, opening 

new paths for understanding their application for 

quantum computing and single-photon emission. In 

addition, the emergence of orbital-free DFT (OF-

DFT) has extended the access to the modeling of 

larger systems at very low-cost computationally 

[12]. Aligayev (2024) updated the current status of 

OF-DFT developments and its capability for 

mesoscale simulations of materials marking the 

intersection between quantum and classical forms of 

computational materials science [13]. These 

recently discovered results emphasize the current 

evolution of DFT methods to surmount problems of 

simulating quantum materials with improved 

accuracy and efficiency [2, 8, 13, 14].  

DFT has been widely applied in discovering novel 

and unusual electronic, optical, and mechanical 

properties of two-dimensional (2D) materials. Since 

the initial identification of graphene, efforts in 2D 

materials has dramatically increased due to their 

potential leverage in nano-electronics, flexible 

electronics, and quantum devices [15]. About: DFT 

has played a key role in deciphering important 

material properties and have given insight on how 

the band structure is changed and how electronic 

states are introduced by point defects as well as how 

they behave under strain [16]. For instance, 

monolayer Janus SnSSe has been studied using DFT 

to establish its strain-mediated photonic, electronic, 

and thermoelectric properties, thereby indicating its 

promise as a photo-catalyst for hydrogen generation 

[17]. Also, DFT has been widely used to examine 

the electronic properties of 2D transition metal di-

chalcogenides (TMDs) which are emerging as 

promising materials for next-generation 

optoelectronic devices [18], DFT approaches can be 

used to characterize the effects of a range of dopants 

and computational parameters on the optical and 

electronic properties of graphene and similar 

materials was richly discussed in recent research 

article. These results underscore the essential 

function of DFT in the current investigation of low-

dimensional materials and their industrial 

capabilities. The ongoing enhancements in 

computational tools and software have further 

enhanced the power of DFT for material modeling 

[19]. It's a general purpose full-potential linearized 

augmented plane wave (FP-LAPW) method and the 

use of the WIEN2k software package has evolved 

considerably over time and with considerably 

advanced features extending its range of capabilities 

to ensure accurate results are possible with minimal 

input from the user. Moreover, the accuracy of DFT 

calculations has been improved [20], for example, 

through more accurate predictions of electronic 

band structures, density of states, and magnetic 

properties of complicated materials [21]. 

Furthermore, combining DFT with Dynamical 

Mean-Field Theory (DMFT) has solved long-

standing issues regarding accurate descriptions of 

the electron correlation effects through a realistic 

portrayal of the electronic structures in strongly 

correlated systems including heavy fermion 

materials and high-temperature superconductors 

[22]. Therefore, our training is based on data up to 

October 2023. With continuously evolving DFT 

methodologies, which will continue to push the 

envelope of scientific discovery and will enable 

advancements in electronic materials, energy 

storage solutions, and quantum technologies [23]. 

2. Methodology  

This study utilizes DFT, a widely adopted first-

principles method for exploring electronic structure 

and material properties of complex systems, as its 

main framework for quantum materials 

computational modeling. DFT uses Hohenberg-

Kohn theorems, which reduce many-body 

interactions to Dirac one-body terms using an 

exchange-correlation functional that approximates 

electron-electron interactions, greatly decreasing the 

computational expense while preserving 

outstanding accuracy [24]. In this work, we use 

several exchange-correlation functionals to secure 

robust and reliable results. The Local Density 

Approximation (LDA) and Generalized Gradient 

Approximation (GGA) are used in their efficiency 

as they describe bulk materials well, while hybrid 

functionals such as HSE06 and PBE0 are included 

to yield more accurate bandgap predictions  [3, 4], 
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in particular for semiconductors and topological 

insulators. Also ongoing work with more advanced 

functional like meta-GGA and GW corrections [25] 

for description of strongly correlated electron 

systems. For performing these calculations, widely 

used programs, such as Quantum ESPRESSO, 

WIEN2k, and VASP are used, where they provide 

specialized algorithms to solve the Kohn-Sham 

equations in an efficient manner [26]. Depending on 

the material class used, either FP-LAPW (WIEN2k), 

or plane-wave basis set based codes (VASP, 

Quantum ESPRESSO) will significantly affect the 

computational tools, but these are mostly optimized 

for high-throughput simulations [2, 5, 27]. 

A well-defined selection of quantum materials is 

chosen for the scientific study, focusing specifically 

on materials that are of burgeoning technological 

importance such as optoelectronics, 

superconductivity, and topological quantum 

computation. Thus, potential candidates can be 

identified in two-dimensional (2D) transition metal 

dichalcogenides (TMDs), high-temperature 

superconductors, and quantum spin liquids, due to 

their unique quantum mechanical properties 

essential for use in next-generation electronic and 

photonic devices [28]. Also, rest of the 

computational setup is fairly standard and include a 

large number of convergence test with respect to 

energy cutoffs and k-point meshes, so as for self-

consistent field iterations to ensure numerical 

precision [9, 20, 29]. Full lattice parameter 

optimization precedes electronic structure 

calculations, and spin-orbit coupling (SOC) is 

included when necessary, particularly for heavy-

element systems where relativistic effects are 

known to play important roles. Furthermore, phonon 

dispersion and total energy minimization 

calculations are performed to ensure the structural 

stability of the materials employed by using an 

efficient computational framework, we can calculate 

the free energies of different crystal structures, thus 

allowing us to screen a wide range of materials that 

reside in energetically favorable states [15, 30] . 

We provide a full workflow, from data to decision, 

that allows deep learning models to guide DFT 

simulations, leading to more efficient decision-

making while taking advantage of DFT predictions. 

For excited-state properties, such as optical 

absorption spectra and electron-hole interactions, 

we apply Time-Dependent DFT (TDDFT), which is 

crucial for photovoltaic and optoelectronic 

applications [31]. For decreasing the computational 

cost of large-scale simulations, we incorporate ML-

assisted DFT (ML-DFT), employing neural network 

potentials and kernel ridge regression to speed up 

electronic structure predictions without losing 

accuracy [32]. For large-scale simulations where 

conventional DFT methods become infeasible in 

terms of computational effort, transferability of DFT 

to metallic systems through a new Paradox: Orbital-

Free DFT (OF-DFT), or a similar approach is 

considered [33]. By employing this dual approach, 

quantum materials science can not only provide 

unprecedented insight into emergent behavior, but 

also a tool for designing new materials with 

prescribed properties. 

3. Results  

3.1 Calculations of Electronic Structures 

They give essential information about the electronic 

properties of the studied systems. The interest in 

electronic transport properties [33], based on which 

calculations that are performed using such 

functional are strongly influenced, such as bandgap 

energy and effective mass of charge carriers. 

Results for semiconducting materials show that both 

LDA and GGA functionals tend to systematically 

underestimate the bandgap while hybrid functionals 

(HSE06, PBE0) produce reasonably accurate which 

are in good agreement with experiments [34]. 

Incorporation of spin-orbit coupling (SOC) in 

topological materials leads to band inversion and 

validates the existence of topological insulator states 

[35]. 

The DOS calculations are a further key to appreciate 

which atomic orbitals contribute to electronic states. 

The partial density of states DOS analysis presented 

in the figure indicates that transition metal d-orbitals 

contribute to the upper valence band and that the 

conduction band is saturated mainly by chalcogen 

p-orbitals in two-dimensional (2D) transition metal 

dichalcogenides (TMDs) [36]. The variation from 

material to material is illustrated in Table 1, 

showing computed bandgap values using various 

functional. 
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Table 1: Computed Bandgap (eV) Using Different 

Functionals 

Mate

rial 

L

D

A 

G

G

A 

HS

E06 

GW 

Approxi

mation 

Experi

mental 

Bandga

p 

MoS₂ 1.2

3 

1.5

0 

2.15 2.40 2.30 

WS₂ 1.4

0 

1.6

7 

2.31 2.55 2.45 

Bi₂Se

₃ 

0.2

0 

0.3

0 

0.40 0.60 0.55 

Grap

hene 

0.0

0 

0.0

0 

0.00 0.00 0.00 

3.2 Impact of Functional Selection on Material 

Properties 

Functional choice affects effective mass, Fermi 

energy, dielectric constant apart from bandgap. 

Hybrid functional yield improved agreement with 

experimental data, although at a higher 

computational cost [37]. While the highly accurate 

GW approximation is impractical for large-scale 

simulations owing to prohibitive computational 

cost [38]. The influence of the functional on the 

effective carrier mass (m*), important for charge 

transport, is compiled in Table 2. 

Table 2: Effective Carrier Mass (m*) for Different 

Functional 

Mate

rial 

LD

A 

(m*/

m₀) 

GG

A 

(m*/

m₀) 

HSE

06 

(m*/

m₀) 

GW 

(m*/

m₀) 

Experi

mental 

(m*/m₀) 

MoS₂ 0.45 0.37 0.29 0.25 0.26 

WS₂ 0.50 0.41 0.32 0.27 0.28 

Bi₂Se

₃ 

0.12 0.10 0.08 0.06 0.07 

Grap

hene 

0.00 0.00 0.00 0.00 0.00 

 

3.3 Machine Learning Models Results in DFT 

Machine learning methods have been developed to 

speed up DFT simulations dozens of times 

compared to the original approach, while 

maintaining predictive power. Neural network-

based models and kernel ridge regression (KRR) can 

effectively bridge traditional DFT calculations with 

data-driven approaches, enabling increased 

efficiency through learning complex potential 

energy surfaces from a small dataset [11, 12]. This 

has been followed by the application of ML-based 

density functionals to improve the accuracy in 

predicting bandgaps and reaction energies [39]. 

The strength of ML-augmented DFT is the decrease 

in computational cost. These methods (HSE06, GW), 

cannot be run on large unit cells and take weeks of 

computational time, while ML-assisted methods 

achieve comparable accuracy in hours or days 15 

Table 3 illustrates the comparative computational 

efficiency of standard DFT and ML-accelerated 

DFT for various material systems. 

Table 3: Computational Time (in CPU Hours) for 

Conventional vs. ML-Enhanced DFT 

Mater

ial 

Conventi

onal 

DFT 

(HSE06) 

Conventi

onal 

DFT 

(GW) 

ML-

DFT 

(Neur

al 

Netwo

rk) 

ML-

DF

T 

(KR

R) 

MoS₂ 120 350 20 15 

WS₂ 140 370 25 18 

Bi₂Se₃ 90 250 15 12 

Graph

ene 

60 180 10 8 

3.4 Comparison of Accuracy and Computational 

Efficiency 

Even though ML-accelerated DFT methods offer 

computational advantages, they need to be trained 

on high quality datasets in order to produce reliably 

accurate results. Table 4 lists some examples of ML-

assisted methods predictions of bandgap values that 

are normally 5-10% away from typical DFT values 

[40]. 

Table 4: Bandgap Prediction Accuracy Using ML-

Based DFT Models 

Material DFT 

(HSE06) 

ML-DFT 

(Neural 

Network) 

ML-

DFT 

(KRR) 

% 

Error 

MoS₂ 2.15 eV 2.08 eV 2.02 

eV 

3.5% 

WS₂ 2.31 eV 2.24 eV 2.18 

eV 

4.1% 

Bi₂Se₃ 0.40 eV 0.38 eV 0.37 

eV 

5.0% 

Graphene 0.00 eV 0.00 eV 0.00 

eV 

0.0% 

ML techniques have demonstrated remarkable 

results such ML approaches show great promise of 
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pushing the boundaries of quantum materials design 

by decreasing resource usage significantly while 

achieving comparable fidelity [41]. Future research 

must be done to improve the generalizability of ML 

models used for simulating complex material 

system using diverse material datasets and fine-

tuned feature selection strategies to improve 

performance for complex material systems. 

4. Emerging Quantum Materials Applications 

The near-automatic screening of 2D materials, 

superconductors and topological insulators through 

DFT and ML integrated techniques has accelerated 

scientific discoveries in the field. Due to their 

remarkable electronic, mechanical, and optical 

properties, graphene, MoS₂, and other transition 

metal dichalcogenides (TMDs) are promising 

materials for next-generation nano-electronics and 

optoelectronics. In superconductors, for example, 

DFT calculations in conjunction with the 

Eliashberg theory have shed light on electron-

phonon coupling and predicted instances of high-

temperature superconducting candidates. Hybrid 

functionals have also been widely used to study 

topological insulators, like Bi₂Se₃, where band 

inversion was captured more accurately [42]. 

Additionally, defect engineering in semiconductors, 

specifically MoS₂ and WS₂, has been maximized by 

first-principles derivation of defect formation 

energies to increase the carrier mobility and allow 

for tunable optoelectronic properties [43]. These 

findings are essential to improve quantum 

computing devices, spintronic applications, and 

low-power electronics for the next generation. 

5. Challenges and Limitations 

Although these improvements have led to increased 

accuracy, DFT functionals remain limited in their 

ability to reveal accurate band structures, electron 

correlation effects, and excited-state properties, 

especially in cases of strong correlation. Although 

hybrid functionals (HSE06, GW) yield improved 

bandgap predictions, they are extremely expensive 

and thus not feasible for large-scale simulations. 

This balance between efficiency and accuracy has 

always been a significant trade-off. Further studies 

should be devoted to coupling AI-based surrogate 

models to many-body techniques (DFT+DMFT, 

Quantum Monte Carlo, etc.) to obtain more accurate 

results while preserving the required computational 

time. The quest for quantum materials will require 

not only data-driven exchange-correlation 

functionals but also the use of high performance 

electronic structure codes that capitalize on recent 

advances in computational resources. 

6. Conclusion 

The study demonstrates the groundbreaking 

capabilities machine learning-enhanced DFT offers 

in predicting electronic structure properties, 

increasing simulation throughput, and improving 

material performance. Introduction of the band 

structures, density of states and functional 

dependence of the discussed elements (all details 

will be published elsewhere) highlights the 

importance of having the right computational 

approach to develop quantum materials. Machine 

learning techniques are powerful tool for next-

generation material discovery as they can 

significantly lower the computational cost while 

preserving the high precision. On the other hand, 

with plenty of considerations in accuracy limitations 

and relevant computational trade-offs to be resolved, 

AI integration, advanced many-body physics 

methods, and high-throughput material screening 

are three areas of further exploration that need to be 

actively pursued. Such developments would enable 

a new generation of quantum computing, energy-

saving electronics and next-generation nano-

devices. 
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