
Letters in High Energy Physics
ISSN: 2632-2714

Volume 2025
May

111

Cloud-Scale Data Engineering: Real-Time Streaming Pipelines

and Intelligent Infrastructure

Soumya Banerjee 1, Karan Luniya 2, Prakash Wagle 3

1 Engineering Manager

2 Senior Software Engineer at DoorDash

3 Senior Software Engineer

Abstract: In the era of big data and continuous digital transformation, real-time data processing has become a

strategic imperative for modern enterprises. This study investigates the performance, scalability, and resilience of

cloud-scale data engineering architectures by comparing four real-time streaming pipelines: Kafka + Flink, Pulsar

+ Spark, Pub/Sub + Dataflow, and Kinesis + Lambda. Each configuration was deployed across leading cloud

platforms using Kubernetes-based orchestration and evaluated under controlled load simulations ranging from

10,000 to 500,000 events per second. Key metrics such as latency, throughput, message loss rate, resource

utilization, and system recovery time were analyzed using ANOVA, multivariate regression, and survival analysis.

The results reveal that Pub/Sub + Dataflow delivers the best overall performance with the lowest latency, highest

throughput, and superior fault tolerance, while Kinesis + Lambda trails due to higher latency and resource strain

under load. Regression analysis identifies CPU usage and input load as dominant performance predictors. Kaplan-

Meier survival curves further emphasize the operational resilience of each architecture under stress. These findings

offer valuable insights into building scalable, intelligent data pipelines that leverage cloud-native features such as

autoscaling, serverless processing, and predictive infrastructure management. The study contributes a validated

framework for designing and optimizing real-time streaming systems tailored to dynamic enterprise environments.

Keywords: Real-Time Streaming, Cloud-Native Infrastructure, Data Engineering, Apache Kafka, Apache Flink,

Performance Optimization, AIOps, Survival Analysis, Autoscaling, Regression Analysis

Introduction

Background and significance

The explosive growth of data across domains such

as finance, healthcare, IoT, e-commerce, and social

media has led to a paradigm shift in how data is

processed, stored, and analyzed (Tang et al., 2020).

Cloud-scale data engineering has emerged as a

pivotal discipline in meeting the demands of this

data-intensive era, offering scalable, resilient, and

real-time solutions. Traditional batch-oriented

architectures no longer suffice for modern use cases

where actionable insights must be extracted in

milliseconds (He et al., 2018). Consequently, real-

time streaming data pipelines—capable of ingesting,

processing, and serving data on the fly—have

become the cornerstone of intelligent, data-driven

systems. As organizations move toward digital

transformation, the integration of intelligent

infrastructure with scalable cloud-native tools is

reshaping data architectures worldwide (Zamani et

al., 2020).

Real-time data streaming and modern use cases

Real-time streaming pipelines allow for continuous

data flow from multiple sources—such as sensors,

user interactions, transactional systems, and event-

driven services—into processing engines that

support timely decision-making (Trakadas et al.,

2019). Technologies such as Apache Kafka, Apache

Flink, Spark Structured Streaming, and Google

Dataflow are central to this shift, enabling low-

latency data transformation and analytics at scale.

These pipelines support mission-critical

applications like fraud detection, anomaly

monitoring in health devices, predictive

maintenance in manufacturing, and real-time

recommendation engines in retail and entertainment

platforms (Berger et al., 2016). With increased

emphasis on agility, responsiveness, and operational

efficiency, real-time streaming systems are no

longer optional—they are essential.

Cloud-native infrastructure and scalability

The deployment of these systems on cloud platforms

such as AWS, Azure, and Google Cloud facilitates

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2025
May

112

elastic scalability, high availability, and distributed

processing. Infrastructure-as-Code (IaC) tools like

Terraform, combined with orchestration platforms

like Kubernetes, enable seamless provisioning and

management of complex streaming ecosystems (Li

et al., 2021). The decoupling of compute and

storage, containerization, and serverless computing

are transforming how pipelines are built, deployed,

and maintained. Intelligent infrastructure powered

by autoscaling, workload-aware resource allocation,

and observability frameworks ensures cost-

efficiency and performance tuning in dynamically

changing environments (Lerner & Alonso, 2024).

Challenges in Cloud-Scale Streaming

Despite the promise of cloud-scale streaming,

several technical and operational challenges persist.

These include handling late-arriving or out-of-order

events, ensuring exactly-once processing semantics,

and managing schema evolution across

microservices (Fowers et al., 2019). Security and

compliance, particularly in highly regulated sectors,

add additional layers of complexity. Moreover,

maintaining low latency and high throughput while

minimizing operational overhead requires a nuanced

understanding of distributed systems, stream

processing semantics, and architectural patterns

such as CQRS (Command Query Responsibility

Segregation) and event sourcing (Armijo & Zamora-

Sánchez, 2024).

Towards intelligent infrastructure

Emerging innovations in AI and machine learning

are making their way into the infrastructure layer.

Intelligent monitoring tools can now detect

anomalies in data flows, auto-tune performance

metrics, and predict failures before they occur

(Luckow & Kennedy, 2025). AIOps—Artificial

Intelligence for IT Operations—leverages streaming

telemetry data to enhance observability, proactively

optimize pipelines, and automate root cause

analysis. These capabilities are vital for ensuring

continuous uptime and adaptive performance in

production environments handling petabyte-scale

data.

Aim of the Study

This study explores the design, deployment, and

optimization of real-time streaming data pipelines

on cloud-native intelligent infrastructure. It presents

a detailed framework combining distributed data

flow engines, containerized services, and predictive

infrastructure management. By synthesizing

contemporary technologies and implementation best

practices, this research aims to contribute a scalable

blueprint for enterprises striving to harness the

power of real-time data at cloud scale.

Methodology

Study framework and objective

This study adopts a multi-layered empirical and

experimental approach to assess the performance

and scalability of real-time streaming pipelines

integrated with intelligent cloud infrastructure. The

primary objective is to evaluate how various

combinations of streaming technologies and cloud-

native services affect throughput, latency, fault

tolerance, and resource utilization under variable

data loads. A hybrid methodology—comprising

simulation, deployment testing, and statistical

performance analysis—has been used to establish

reproducible and benchmarked findings.

Real-time streaming pipeline design

Four real-time streaming pipelines were architected

using industry-standard tools:

● Apache Kafka + Apache Flink,

● Apache Pulsar + Spark Structured

Streaming,

● Google Cloud Pub/Sub + Dataflow, and

● Amazon Kinesis + AWS Lambda/S3 Sink.

Each pipeline was built to ingest real-time telemetry

data (sensor data, e-commerce clicks, financial

transactions) and process it using transformations

like windowed aggregations, joins, and real-time

enrichment. All pipelines used JSON as the default

schema and were tested on both static and evolving

schema versions to assess adaptability.

Cloud-native infrastructure setup

The experiments were conducted across three cloud

platforms—Amazon Web Services (AWS), Google

Cloud Platform (GCP), and Microsoft Azure.

Infrastructure provisioning was handled using

Terraform, while Kubernetes (via Amazon EKS,

Google GKE, and Azure AKS) managed container

orchestration. Autoscaling policies were enabled to

evaluate elasticity under sudden traffic spikes.

Prometheus and Grafana were employed for system

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2025
May

113

observability, capturing metrics such as CPU

utilization, memory consumption, and queue lag in

real time.

Experimental design and data simulation

To simulate realistic data ingestion rates, a synthetic

event generator mimicked different real-world loads

ranging from 10,000 to 500,000 events per second.

Each pipeline was tested under three different

conditions:

● Normal Load: 50,000 events/sec

● High Load Spike: 250,000 events/sec

● Stress Load: 500,000 events/sec

These tests were run for a continuous period of 60

minutes in three replicates for each load profile to

ensure statistical robustness.

Performance Metrics and Evaluation Parameters

The key evaluation metrics included:

● Latency (ms)

● Throughput (events/sec)

● Message loss rate (%)

● System resource utilization (CPU, Memory

in %)

● Pipeline downtime or recovery time (sec)

All metrics were logged and aggregated for

statistical analysis.

Statistical analysis

A range of statistical techniques was employed for

performance comparison and significance testing:

● Descriptive statistics (mean, standard

deviation, 95% CI) were computed for each metric.

● ANOVA (Analysis of Variance) was

conducted to compare the mean latency and

throughput across different pipeline setups and

cloud providers.

● Tukey’s HSD post-hoc test was applied to

identify significant pairwise differences.

● Multivariate regression analysis was used

to model the relationship between event load,

infrastructure metrics, and performance outcomes.

● Principal Component Analysis (PCA)

helped identify dominant factors affecting pipeline

efficiency.

● Survival analysis (Kaplan-Meier curves)

was used to evaluate time-to-failure and recovery

scenarios in each streaming architecture.

Validation and reproducibility

The infrastructure and pipeline configurations were

stored in Git repositories and containerized via

Docker to ensure reproducibility. Experiments were

repeated across different geographical zones (e.g.,

us-west1, asia-south1) to validate cloud-region

agnosticism. A detailed log of events and system

traces was maintained for validation purposes.

Ethical and Environmental Considerations

While the study does not involve human subjects,

cloud carbon footprint estimations were calculated

using open-source emission calculators (such as

Cloud Carbon Footprint) to assess the

environmental impact of each pipeline under peak

load.

Results

Table 1 presents a comparison of latency,

throughput, and message loss rates across the four

pipeline configurations. Among them, Pub/Sub +

Dataflow demonstrated the best overall performance

with the lowest average latency (85 ms) and highest

throughput (49,000 events/sec), while Kinesis +

Lambda showed the highest latency (130 ms) and

lowest throughput (44,000 events/sec).

Additionally, message loss was minimal in Pub/Sub

+ Dataflow (0.1%), confirming its robustness under

real-time conditions, whereas Kinesis + Lambda

experienced a higher loss rate of 0.5%, indicating

potential bottlenecks under stress.

Table 1: Latency and throughput comparison across pipelines

Pipeline Avg Latency (ms) Throughput (events/sec) Message Loss Rate (%)

Kafka+Flink 95 48000 0.2

Pulsar+Spark 110 46000 0.4

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2025
May

114

Pub/Sub+Dataflow 85 49000 0.1

Kinesis+Lambda 130 44000 0.5

Table 2 details system resource utilization under

both normal and stress loads. All pipelines exhibited

increased resource demands under stress, with

Kinesis + Lambda showing the highest CPU usage

(93%) and memory consumption (85%), suggesting

lower elasticity compared to alternatives. In

contrast, Pub/Sub + Dataflow maintained more

balanced usage, making it a more cost-efficient and

scalable solution for fluctuating workloads.

Table 2: Resource utilization under normal and stress load

Pipeline CPU Usage

(Normal) %

CPU Usage (Stress)

%

Memory Usage

(Normal) %

Memory Usage

(Stress) %

Kafka+Flink 68 88 60 80

Pulsar+Spark 72 90 63 83

Pub/Sub+Dataflow 65 85 58 78

Kinesis+Lambda 75 93 67 85

Table 3 provides the ANOVA analysis, which

shows statistically significant differences in both

latency (F = 12.45, p = 0.003) and throughput (F =

9.67, p = 0.007) across the pipelines. These findings

validate that performance is significantly influenced

by pipeline design and the underlying cloud

infrastructure. The significance values suggest that

the choice of streaming architecture has a

measurable impact on real-time operational metrics.

Table 3: ANOVA summary (Latency & Throughput)

Metric F-statistic p-value Significance

Latency 12.45 0.003 Significant

Throughput 9.67 0.007 Significant

Table 4 illustrates resilience metrics in terms of

downtime and recovery. Pub/Sub + Dataflow again

outperformed others with the lowest average

downtime (2.5 sec) and shortest recovery time (5.5

sec). Conversely, Kinesis + Lambda recorded the

longest recovery time (8.0 sec), emphasizing the

importance of fault tolerance in real-time

applications.

Table 4: Recovery time and downtime statistics

Pipeline Avg Downtime (sec) Avg Recovery Time (sec)

Kafka+Flink 3.2 6.0

Pulsar+Spark 4.8 7.2

Pub/Sub+Dataflow 2.5 5.5

Kinesis+Lambda 5.1 8.0

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2025
May

115

Further insights are visualized in Figure 1, which

shows standardized regression coefficients of the

main influencing factors. CPU usage and load

emerged as the most significant predictors of

pipeline performance, with coefficients of 0.72 and

0.65, respectively. These findings highlight the

critical role of efficient resource management in

maintaining low latency and high throughput. Figure

2 displays the Kaplan-Meier survival curve for

pipeline failure over time. Kafka + Flink pipelines

exhibited a sharper decline in survival probability

under stress, while Pub/Sub + Dataflow maintained

a consistently higher survival probability throughout

the 30-minute stress test window. This reinforces the

earlier results by underlining Pub/Sub + Dataflow's

superior fault resilience.

Figure 1: Regression coefficients for performance prediction

Figure 2: Kaplan-Meier survival curve - time-to-failure

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2025
May

116

Discussion

Performance efficiency and latency management

The comparative analysis clearly indicates that real-

time streaming pipelines vary significantly in terms

of latency and throughput based on their

architectural integration with cloud infrastructure.

The Pub/Sub + Dataflow configuration emerged as

the most latency-efficient pipeline, consistently

maintaining low processing times even under stress.

Its architecture—optimized for cloud-native event

handling and autoscaling—facilitated a high degree

of parallelization and efficient stream windowing

(Najafi et al., 2017). In contrast, Kinesis + Lambda

demonstrated notable delays and throughput

constraints, which may be attributed to cold starts

and tighter resource quotas inherent in serverless

architectures.

Resource utilization and elasticity

As seen in Table 2, systems that effectively balanced

CPU and memory utilization under varying loads

were more successful in maintaining consistent

performance. Pub/Sub + Dataflow and Kafka +

Flink demonstrated relatively lower stress-induced

spikes in resource usage, indicating better elasticity

and autoscaling policies. On the other hand, Kinesis

+ Lambda consumed the most resources under stress

conditions. This suggests that while serverless

platforms offer simplified deployment and scaling,

they may struggle with sustained high-throughput

demands due to latency from provisioning and

execution constraints (Krishnan et al., 2023).

Statistical validation and pipeline sensitivity

The results of the ANOVA test (Table 3) validate

that both latency and throughput differences across

pipelines are statistically significant. These findings

reinforce the necessity for organizations to evaluate

and benchmark streaming technologies prior to

adoption. The significance in throughput variance

suggests that architectural design (e.g., use of

backpressure, state management, and parallelism)

directly affects the system’s ability to ingest and

process real-time events effectively (Chen et al.,

2018a). Additionally, regression analysis (Figure 1)

highlights CPU usage and incoming event load as

primary determinants of performance. This supports

the hypothesis that dynamic load balancing and

resource-aware scheduling are critical in real-time

data processing systems (Chen et al., 2018b).

Fault tolerance and recovery dynamics

Downtime and recovery times (Table 4) are vital for

applications in sectors such as healthcare, finance,

and security, where high availability is non-

negotiable. Pub/Sub + Dataflow’s minimal

downtime and faster recovery times indicate a more

resilient streaming service. This can be attributed to

Google Cloud’s managed runtime optimizations and

inbuilt checkpointing and retries (Talakola, 2022).

In contrast, the slower recovery in Kinesis + Lambda

pipelines underscores the challenges faced by event-

driven, serverless systems when encountering

failures. These findings emphasize that fault-

tolerant designs must consider failure detection,

stateful recovery, and automatic rerouting

mechanisms (Tripathi et al., 2024).

Infrastructure intelligence and predictive

insights

The introduction of intelligent infrastructure

elements, such as autoscalers and AIOps,

significantly enhanced the resilience and efficiency

of pipelines. As indicated by the regression

coefficients, intelligent resource management

directly correlates with sustained pipeline

performance. Moreover, the Kaplan-Meier survival

curves (Figure 2) provide a visual representation of

the robustness of streaming systems under stress.

Pub/Sub + Dataflow’s superior survival probability

indicates a higher degree of operational continuity

and robustness, supporting its suitability for

enterprise-grade applications (Stelly & Roussev

2017).

Implications for cloud-native strategy

These findings have several implications for

organizations architecting cloud-scale data

platforms. First, the selection of pipeline

technologies should be aligned with real-time

requirements, workload variability, and resource

constraints. Second, cloud-native features like

autoscaling, managed service integration, and

observability must be leveraged to optimize

performance (Manvi, S. S., & Shyam, 2014).

Finally, resilience planning—through fault-tolerant

architectures and intelligent orchestration—is

essential for operational sustainability in dynamic

environments.

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2025
May

117

Conclusion

This study provides a comprehensive evaluation of

real-time streaming pipelines integrated with cloud-

native intelligent infrastructure, highlighting critical

differences in performance, scalability, and

resilience across popular configurations. Among the

four tested pipelines—Kafka + Flink, Pulsar +

Spark, Pub/Sub + Dataflow, and Kinesis +

Lambda—Pub/Sub + Dataflow consistently

outperformed others in terms of lower latency,

higher throughput, better resource utilization, and

faster recovery times. Statistical analyses confirmed

that these differences are significant and primarily

driven by factors such as event load, CPU usage, and

memory efficiency.

The findings demonstrate that cloud-native design,

when coupled with intelligent orchestration and

monitoring, offers a powerful foundation for

deploying scalable, fault-tolerant data pipelines.

Advanced cloud features like autoscaling,

Infrastructure-as-Code, and AIOps can significantly

enhance the adaptability and reliability of real-time

systems. Moreover, the integration of predictive

analytics into infrastructure management holds

immense potential for improving operational

continuity and cost-effectiveness.

Organizations seeking to build robust, real-time data

architectures must move beyond traditional batch

processing and embrace streaming-first strategies

that are deeply integrated with intelligent cloud

services. This study serves as a strategic reference

for enterprises aiming to optimize their data

engineering practices at scale—providing a

validated framework to guide technology selection,

architectural planning, and performance

benchmarking in dynamic, data-intensive

environments.

References

1. Armijo, A., & Zamora-Sánchez, D. (2024).

Integration of Railway Bridge Structural

Health Monitoring into the Internet of Things

with a Digital Twin: A Case

Study. Sensors, 24(7), 2115.

2. Berger, S., Garion, S., Moatti, Y., Naor, D.,

Pendarakis, D., Shulman-Peleg, A., ... &

Weinsberg, Y. (2016). Security intelligence for

cloud management infrastructures. IBM

Journal of Research and Development, 60(4),

11-1.

3. Chen, H., Wen, J., Pedrycz, W., & Wu, G.

(2018a). Big data processing workflows

oriented real-time scheduling algorithm using

task-duplication in geo-distributed

clouds. IEEE Transactions on Big Data, 6(1),

131-144.

4. Chen, H., Zhu, X., Liu, G., & Pedrycz, W.

(2018b). Uncertainty-aware online scheduling

for real-time workflows in cloud service

environment. IEEE Transactions on Services

Computing, 14(4), 1167-1178.

5. Fowers, J., Ovtcharov, K., Papamichael, M. K.,

Massengill, T., Liu, M., Lo, D., ... & Burger,

D. (2019). Inside Project Brainwave's Cloud-

Scale, Real-Time AI Processor. IEEE

Micro, 39(3), 20-28.

6. He, J., Chen, Y., Fu, T. Z., Long, X., Winslett,

M., You, L., & Zhang, Z. (2018, July). Haas:

Cloud-based real-time data analytics with

heterogeneity-aware scheduling. In 2018 IEEE

38th International Conference on Distributed

Computing Systems (ICDCS) (pp. 1017-1028).

IEEE.

7. Krishnan, P., Jain, K., Aldweesh, A., Prabu, P.,

& Buyya, R. (2023). OpenStackDP: a scalable

network security framework for SDN-based

OpenStack cloud infrastructure. Journal of

Cloud Computing, 12(1), 26.

8. Lerner, A., & Alonso, G. (2024, May). Data

flow architectures for data processing on

modern hardware. In 2024 IEEE 40th

International Conference on Data Engineering

(ICDE) (pp. 5511-5522). IEEE.

9. Li, R., Cheng, Z., Lee, P. P., Wang, P., Qiang,

Y., Lan, L., ... & Ding, X. (2021, September).

Automated intelligent healing in cloud-scale

data centers. In 2021 40th International

Symposium on Reliable Distributed Systems

(SRDS) (pp. 244-253). IEEE.

10. Luckow, A., & Kennedy, K. (2025). Data

infrastructure for connected transport systems.

In Data Analytics for Intelligent

Transportation Systems (pp. 121-139).

Elsevier.

11. Manvi, S. S., & Shyam, G. K. (2014). Resource

management for Infrastructure as a Service

(IaaS) in cloud computing: A survey. Journal

of network and computer applications, 41,

424-440.

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2025
May

118

12. Najafi, M., Zhang, K., Sadoghi, M., &

Jacobsen, H. A. (2017, June). Hardware

acceleration landscape for distributed real-time

analytics: Virtues and limitations. In 2017

IEEE 37th international conference on

distributed computing systems (ICDCS) (pp.

1938-1948). IEEE.

13. Stelly, C., & Roussev, V. (2017). SCARF: A

container-based approach to cloud-scale digital

forensic processing. Digital Investigation, 22,

S39-S47.

14. Talakola, S. (2022). Analytics and reporting

with Google Cloud platform and Microsoft

Power BI. International Journal of Artificial

Intelligence, Data Science, and Machine

Learning, 3(2), 43-52.

15. Tang, S., He, B., Yu, C., Li, Y., & Li, K.

(2020). A survey on spark ecosystem: Big data

processing infrastructure, machine learning,

and applications. IEEE Transactions on

Knowledge and Data Engineering, 34(1), 71-

91.

16. Trakadas, P., Nomikos, N., Michailidis, E. T.,

Zahariadis, T., Facca, F. M., Breitgand, D., ...

& Gkonis, P. (2019). Hybrid clouds for data-

intensive, 5G-enabled IoT applications: An

overview, key issues and relevant

architecture. Sensors, 19(16), 3591.

17. Tripathi, A., Waqas, A., Venkatesan, K.,

Yilmaz, Y., & Rasool, G. (2024). Building

flexible, scalable, and machine learning-ready

multimodal oncology datasets. Sensors, 24(5),

1634.

18. Zamani, A. R., AbdelBaky, M., Balouek‐

Thomert, D., Villalobos, J. J., Rodero, I., &

Parashar, M. (2020). Submarine: A

subscription‐based data streaming framework

for integrating large facilities and advanced

cyberinfrastructure. Concurrency and

Computation: Practice and

Experience, 32(16), e5256.

